
Near-Optimal Learning of Extensive-Form
Games with Imperfect Information

Yu Bai
Salesforce Research

Chi Jin (Princeton) Song Mei (UC Berkeley) Tiancheng Yu (MIT)

Multi-Agent RL / Games with Imperfect Information

Imperfect Information:
Players can only observe partial information about the true underlying game state

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019],
Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], …

Image source (right):
No-Press Diplomacy from Scratch, Bakhtin et al. 2021.

Outline

• Formulation: Imperfect-Information Extensive-Form Games (IIEFGs)

• Game structure

- Bilinear structure, sequence-form policies
- Formulation as online linear regret minimization

• Online Mirror Descent

- IXOMD algorithm
- Balanced OMD (our algorithm)

• Counterfactual Regret Minimization

- MCCFR framework
- Balanced CFR (our algorithm)

• Implications in multi-player general-sum games

Imperfect-Information Extensive-Form Games (IIEFGs)

A commonly used formulation of games involving
• Multi-agent
• Sequential plays
• Imperfect information

Image source: Superhuman AI for Multiplayer Poker,
Brown & Sandholm 2019.

[Kuhn 1953]

Imperfect-Information Extensive-Form Games (IIEFGs)

A commonly used formulation of games involving
• Multi-agent
• Sequential plays
• Imperfect information

Image source: Superhuman AI for Multiplayer Poker,
Brown & Sandholm 2019.

[Kuhn 1953]

We formulate IIEFGs as Partially Observable Markov Games (POMGs)
with tree structure + perfect recall [Kovarik et al. 2019, Kozuno et al. 2021]

Definition of IIEFGs

State, action, reward, transition

Information sets

xh = x(sh), yh = y(sh)

Two-player zero-sum IIEFG

• : max-player

• : min-player
μ ∈ Πmax
ν ∈ Πmin

Policy

rh __rn(sina.ba) A =lAl

Ñ-=lBl(Sir
,
9h
,
ba) → (uh

,
Sh+,) shh - Pal . lsnea.ba)

Eiji oooo
a-

-

I = # info sets for wax -player , I

an -backup
bh -GIC . Isn))

Definition of IIEFGs

Perfect recall assumption

At infoset , history is uniquexh (x1, a1, …, xh−1, ah−1)

Tree structure:

At state , history is uniquesh (s1, a1, b1, …, sh−1, ah−1, bh−1)
-

Osh
_

an,# £ game tree

IN
0000

s④-

0
#

a# game tree for max-player

X

Learning goals in IIEFGs

Game value (expected cumulative reward):

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh(⋅ |xh), bh ∼ νh(⋅ |yh)]
- -

-

Learning goals in IIEFGs

Game value (expected cumulative reward):

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh(⋅ |xh), bh ∼ νh(⋅ |yh)]

Goal: Approximate Nash Equilibrium
 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
Vμ,ν† ≤ ε

Learning goals in IIEFGs

Game value (expected cumulative reward):

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh(⋅ |xh), bh ∼ νh(⋅ |yh)]

Goal: Approximate Nash Equilibrium
 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
Vμ,ν† ≤ ε

Goal’: No-regret (only control max player)

 Reg(T) := max
μ†

T

∑
t=1

Vμ†,νt − Vμt,νt = o(T)w - w

Learning goals in IIEFGs

Game value (expected cumulative reward):

Vμ,ν := $[
H

∑
h=1

rh(sh, ah, bh) | ah ∼ μh(⋅ |xh), bh ∼ νh(⋅ |yh)]

Goal: Approximate Nash Equilibrium
 NEGap(μ, ν) := max

μ†
Vμ†,ν − min

ν†
Vμ,ν† ≤ ε

Goal’: No-regret (only control max player)

 Reg(T) := max
μ†

T

∑
t=1

Vμ†,νt − Vμt,νt = o(T)

Online-to-batch conversion (e.g. [Zinkevich et al. 2007])
Play 2 no-regret algs against each other => Average policies* are approximate Nash

/£
fat cuts

'
Ñ

- Result)

NEGap(JT, F) { RetdTLtResv

Bilinear structure, sequence-form policy

Reaching probability

p1:h(sh, ah, bh) =

[Romanovskii 1962, Koller et al. 1996, Von Stengel 1996, …]

Decompose game value

H − Vμ,ν = ∑H

h=1 ∑sh,ah,bh
p1:h(sh, ah, bh)(1 − rh(sh, ah, bh))

=

a
1"

-

ptl④×i)H(④s ,) ✗ - - - ✗ PHshlsh-baa-i.ba-1)
-=

µ(a#Éh)
h - =

=ÉX Phyla, / Suhani, ki-D. Vnicbiitxi)
☒h.hu) →

11 :h(Xh , %) sequence-fompoliaÉ
→ in

&

→ _
É -211:hCxn

, an) . I
1=1 Xuan- sa :×(sy=×n

P"-11s" / S"-1,94-1
,
but) .0hdbu /Sw) .

bhc-B-CI-rhlswan.to#:--bhlxh,an)

Online linear regret minimization

Opponent , loss function
{νt}T
t=1 {ℓt := ℓνt}T

t=1
H − Vμ,νt =

Regret

Reg(T) = maxμ†∈Πmax

∑T
t=1 (Vμ†,νt − Vμt,νt)

=

-

T.lt >
% , I > : = É=

, ¥,, Manahan) than ,9)

max

is
ÉÉ Hut , ex >

.

Existing algorithms

Existing algorithms

Full feedback / known game:
• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009,

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Existing algorithms

Full feedback / known game:
• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009,

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing):
• Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
• Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …]
• Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]

• Learns an -Nash within episodes (prior best; ignoring)
• : number of information sets; : number of actions
• Lower bound is , still factor away

ε Õ ((X2A + Y2B)/ε2) poly(H)
X, Y A, B

Ω((XA + YB)/ε2) max{X, Y}

Existing algorithms

Full feedback / known game:
• Formulation as a linear program [von Stengel 1996, Koller et al. 1996, …]
• First-order optimization / online mirror descent (OMD) over sequence-form strategy space

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, Lee et al. 2021, …]
• Counterfactual regret minimization (CFR) [Zinkevich et al. 2007, Lanctot et al. 2009,

Tammelin 2014, Burch et al. 2019, Farina et al. 2020b, …]

Bandit feedback (only observe trajectories from playing):
• Model-based approaches [Zhou et al. 2019, Zhang & Sandholm 2021]
• Monte-Carlo CFR (MCCFR) [Farina et al. 2020c, Farina & Sandholm 2021, …]
• Implicit-Exploration Online Mirror Descent (IXOMD) [Kozuno et al. 2021]

• Learns an -Nash within episodes (current best; ignoring)
• : number of information sets; : number of actions
• Lower bound is , still factor away

ε Õ ((X2A + Y2B)/ε2) poly(H)
X, Y A, B

Ω((XA + YB)/ε2) max{X, Y}

Question: How to design algorithms for learning Nash in two-player zero-sum IIEFGs
from bandit feedback with near-optimal sample complexity?

Online Mirror Descent (OMD)

Algorithm (OMD, sketch):

For :

t = 1,…, T
μt+1 = argmin

μ∈Πmax

Recall the regret

Reg(T) = maxμ†∈Πmax

∑T
t=1 ⟨μt − μ†, ℓt⟩

[Gilpin et al. 2008, Hoda et al. 2010, Kroer et al. 2015, …]

secret > +Him
-

Online Mirror Descent (OMD)

(i) Dilated KL distance

D(μ∥μ′) :=

Algorithm (OMD, sketch):

For :

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)

-

[Hoda et . al
.

2010
,

Kroer et al . V15] :

•

E. ¥
.ds÷÷

Online Mirror Descent (OMD)

(ii) Loss vector

Full feedback: Set ℓ̃ t := ℓt

Algorithm (OMD, sketch):

For :

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)
-

-

-

Online Mirror Descent (OMD)

(ii) Loss vector

Full feedback: Set

Bandit feedback: Importance weighted loss estimator (like EXP3)

1. Play one episode with (opponent plays), observe trajectory

2. Unbiased loss estimator

ℓ̃ t := ℓt

μt νt

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

ℓ̃ t
h(xh, ah) =

Algorithm (OMD, sketch):

For :

t = 1,…, T
μt+1 = argmin

μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)

- 2.a.si#-:&::---Y'
""""" he :*"

Implicit-Exploration Online Mirror Descent (IXOMD)

Algorithm (IXOMD):
1. Play an episode with policy , construct loss estimator

 .

2. Update policy
 ,

(with efficient implementation)

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γ

μt+1 = argmin
μ∈Πmax

η⟨μ, ℓ̃ t⟩ + D(μ∥μt)

Theorem [Kozuno, Menard, Munos, Valko, 2021]:
IXOMD achieves regret (against adversarial opponents), and learns
-Nash within episodes of self-play.

Õ (X2AT) ϵ
Õ ((X2A + Y2B)/ε2)

IX bonus

[Kozuno et al. 2021]

e-
a

Algorithm (Balanced OMD, max-player):
1. Play an episode with policy , construct loss estimator

 .

2. Update policy
 ,

(with efficient implementation)

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Algorithm (Balanced OMD, max-player):
1. Play an episode with policy , construct loss estimator

 .

2. Update policy
 ,

(with efficient implementation)

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Main new ingredient: Balanced dilated KL distance

,

= Dilated KL + reweighting by Balanced exploration policies

(extension of [Farina et al. 2020c]).

Dbal(μ∥μ′) := ∑
h,xh,ah

μ1:h(xh, ah)
μ⋆,h

1:h (xh, ah)
log μh(ah |xh)

μ′ h(ah |xh)

{μ⋆,h}H
h=1

μ⋆,h
1:h (xh, ah) =

h

∏
h′ =1

|Ch(xh′ , ah′) |
|Ch(xh′) |

Number of descendants
of within h-th layer(xh′ , ah′)

-

→ ⑤

Balanced exploration policies

Sequence-form (till step):

Conditional-form:

h μ⋆,h
1:h (xh, ah) = ∏h

h′ =1
|Ch(xh′ , ah′) |

|Ch(xh′) |

μ⋆,h
h′ (ah′ |xh′) =

|Ch(xh′ , ah′) |
|Ch(xh′) |

, for 1 ≤ h′ ≤ h;

1/A, for h + 1 ≤ h′ ≤ H .

Intuition: Visit “larger subtrees” more often, balanced by # descendants in layer h

“Balancing property”:

④ ox"

¥¥
,

i

0
i.

-② 000000W 00000

c±i¥aI→
For any ME Tlnax

,

¥
.

✗na
.

Algorithm (Balanced OMD, max-player):
1. Play an episode with policy , construct loss estimator

 .

2. Update policy
 ,

(with efficient implementation)

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Theorem [Bai, Jin, Mei, Yu, 2022]:
IXOMD achieves regret (against adversarial opponents), and learns
-Nash within episodes of self-play.

Õ (XAT) ε
Õ ((XA + YB)/ε2)

ha

=

Algorithm (Balanced OMD, max-player):
1. Play an episode with policy , construct loss estimator

 .

2. Update policy
 ,

(with efficient implementation)

μt

ℓ̃ t
h(xh, ah) := 1{(xt

h, at
h) = (xh, ah)} ⋅ (1 − rt

h)
μt

1:h(xh, ah) + γμ⋆,h
1:h (xh, ah)

μt+1 = argmin
μ∈Πmax

η⟨ ℓ̃ t, μ⟩+Dbal(μ∥μt)

Balanced OMD

Main technical highlight:
“Balancing effect” introduced by (adapts to geometry of policy space)
==> better stability bound than existing OMD analyses (e.g. [Kozuno et al. 2021]) ,

by bounding a certain log-partition function via 2nd order Taylor expansion

Dbal

Counterfactual Regret Minimization
[Zinkevich et al. 2007]

Idea: Counterfactual Regret Decomposition (performance difference lemma)
≈
⟨μt − μ†, ℓt⟩

=
H

∑
h=1

$μ†
1:h−1μt

h:H [
H

∑
h′ =h

rh] − $μ†
1:hμt

h+1:H [
H

∑
h′ =h

rh]
=

H

∑
h=1

∑
xh,ah

Above, is the counterfactual loss function (Q function x “probabilities”) Lt
h(xh, ah) ≈

Lt
h(xh, ah) :=

→

⑦ I

1¥,
Kat

,
an-c) . CHI Ian 1×4 -it lanlxul) . LEC×n,g

= ¥
, ¥ 11h - i 1×4 , an- it . Gil - 1×4-1411×4

, 44×4 .)) au

Maa :hi 1×4, 9m) . but (✗hi
,
an)

.IÉ¥i¥¥÷:

Counterfactual Regret Minimization
[Zinkevich et al. 2007]

Counterfactual regret decomposition:

Reg(T) = max
μ†∈Πmax

T

∑
t=1

⟨μt − μ†, ℓt⟩

≤
H

∑
h=1

max
μ†

1:h−1
∑
xh,ah

μ†
1:h−1(xh−1, ah−1)

≤1

max
μ†(⋅|xh)

T

∑
t=1

⟨μt(⋅ |xh) − μ†(⋅ |xh), Lt
h(xh, ⋅)⟩

:=Rimm,T
h (xh)

≤
H

∑
h=1

∑
xh,ah

Rimm,T
h (xh) .

Algorithm (CFR, sketch):

For , all :

t = 1,…, T (h, xh, ah)
μt+1(⋅ |xh) = Rxh

. Update({L̃t
h(xh, a)}a∈1)

Regret minimization subroutine
on simplex (e.g. Hedge)

Loss estimator for
counterfactual losses

÷:¥⇒#ÉG

Monte-Carlo Counterfactual Regret Minimization (MCCFR)
[Lanctot et al. 2009]

Algorithm (MCCFR framework, bandit feedback case):
For :

1. Play one episode with some sampling policy , observe trajectory

2. Construct unbiased counterfactual loss estimator
 .

3. Update policy at each information set
 .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1(⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)

Not necessarily μt

e.g. from
{ ℓ̃ t

h(xh, ah)}

Monte-Carlo Counterfactual Regret Minimization (MCCFR)
[Lanctot et al. 2009]

Algorithm (MCCFR framework, bandit feedback case):
For :

1. Play one episode with some sampling policy , observe trajectory

2. Construct unbiased counterfactual loss estimator
 .

3. Update policy at each information set
 .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1(⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)

Many design choices:
• Sampling policy
• Loss estimator
• Regret minimization algorithm (e.g. Hedge, Regret Matching, …)
• Bandit feedback / general stochastic feedback (>1 episodes per iteration)

μ̃ t

Rxh

Not necessarily μt

e.g. from
{ ℓ̃ t

h(xh, ah)}

MCCFR framework
[Lanctot et al. 2009]

• An initial regret concentration analysis is given in [Farina et al. 2020c]
• Later instantiated by [Farina & Sandholm 2021] => rate for

learning NE from bandit feedback.
Õ (poly(X, Y, A, B)/ϵ4)

Algorithm (MCCFR framework, bandit feedback case):
For :

1. Play one episode with some sampling policy , observe trajectory

2. Construct unbiased counterfactual loss estimator
 .

3. Update policy at each information set
 .

t = 1,…, T
μ̃ t

(xt
1, at

1, rt
1, …, xt

H, at
H, rt

H)

L̃t
h(xh, ah) : $[L̃t

h(xh, ah)] = Lt
h(xh, ah)

μt+1(⋅ |xh) = Rxh
. Update({L̃t

h(xh, a)}a∈1)

Balanced CFR

Algorithm (Balanced CFR, max-player):
1. Play H episodes with policy , observe trajectory

2. Construct counterfactual loss estimator

 .

3. Update policy at each information set via Hedge
 .

(can also use Regret Matching [Zinkevich et al. 2007].)

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H)

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′)

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp(− ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Mixture of and μ⋆,h μt

Balanced CFR

Algorithm (Balanced CFR, max-player):
1. Play H episodes with policy , observe trajectory

2. Construct counterfactual loss estimator

 .

3. Update policy at each information set via Hedge
 .

(can also use Regret Matching [Zinkevich et al. 2007].)

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H)

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′)

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp(− ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Mixture of and μ⋆,h μt

Our Balanced CFR Algorithm = MCCFR framework
+ balanced exploration policy
+ sampling by mixing importance weighting (using) and Monte Carlo (using)
+ “adaptive” learning rate at each infoset

{μ⋆,h}
μ⋆,h μt

μ⋆,h
1:h (xh, ah)

Balanced CFR

Algorithm (Balanced CFR, max-player):
1. Play H episodes with policy , observe trajectory

2. Construct counterfactual loss estimator

 .

3. Update policy at each information set via Hedge
 .

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H)

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′)

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp(− ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Theorem [Bai, Jin, Mei, Yu, 2022]:
Balanced CFR learns -Nash within episodes of self-play.

 also achieves , but actual played policies.
ε Õ ((XA + YB)/ε2)

{μt}T
t=1 Reg(T) ≤ Õ (XAT) ≠

Balanced CFR

Algorithm (Balanced CFR, max-player):
1. Play H episodes with policy , observe trajectory

2. Construct counterfactual loss estimator

 .

3. Update policy at each information set via Hedge
 .

μ⋆,h
1:h μt

h+1:H

(xt,(h)
1 , at,(h)

1 , rt,(h)
1 , …, xt,(h)

H , at,(h)
H , rt,(h)

H)

L̃t
h(xh, ah) :=

1{(xt,(h)
h , at,(h)

h) = (xh, ah)}
μ⋆,h

1:h (xh, ah)
⋅

H

∑
h′ =h

(1 − rt,(h)
h′)

μt+1
h (a |xh) ∝a μt

h(a |xh) ⋅ exp(− ημ⋆,h
1:h (xh, a)L̃t

h(xh, a))

Main technical highlight:
Sharp counterfactual regret decomposition involving coefficient

“balanced” with Hedge’s regret bound

μ†
1:h−1(xh−1, ah−1)

log A
μ⋆,h

1:h (xh, a)
+ ∑

a,t
μ⋆,h

1:h (xh, a) ⋅ L̃t
h(xh, a)2

⑦ /
g-

'

Comparison against existing results

Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Normal-Form Coarse Correlated Equilibrium
 CCEGap(π) := max

i∈[m] (max
π†

i

Vπ†
i ,π−i − Vπ) ≤ ε

No gains in deviating
from correlated policy π

Coarse Correlated Equilibria (CCEs) in multi-player IIEFGs

Corollary: Run Balanced OMD or Balanced CFR on all players ==> -NFCCE of
multi-player general-sum IIEFGs within episodes of play.

ε
Õ ((max

i
XiAi)/ε2)

Proof follows directly by known connection between NFCCE and no-regret learning
in multi-player general-sum IIEFGs [Celli et al. 2019].

Normal-Form Coarse Correlated Equilibrium
 CCEGap(π) := max

i∈[m] (max
π†

i

Vπ†
i ,π−i − Vπ) ≤ ε

No gains in deviating
from correlated policy π

Summary
First line of near-optimal algorithms for learning IIEFGs from bandit feedback

Crucial use of balanced exploration policies
• distance functions in OMD
• sampling policies in CFR

Summary
First line of near-optimal algorithms for learning IIEFGs from bandit feedback

Crucial use of balanced exploration policies
• distance functions in OMD
• sampling policies in CFR

Future directions
• Further understandings of OMD/CFR type algorithms
• Sample-efficient learning of other equilibria (e.g. correlated equilibria)
• Relationship between Markov Games and Extensive-Form Games
• Empirical investigations

Thank you!
https://arxiv.org/abs/2202.01752

