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Multi-Agent Reinforcement Learning

multi-agentsequential decisions

A relatively new field, with unique challenges and opportunities 

for both theory/empirical research.
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Normal-Form Games (NFGs)

Multi-player Normal-Form Games (NFGs):

• Players 

• Each player  chooses their action  simultaneously

• Each player  receives reward  (general-sum)

{1,…, m}
i ai ∈ 𝒜i

i ri(a1, …, am) ∈ [0,1]



Markov Games (MGs)

Finite-horizon General-Sum Markov Games with  players:m
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[Shapley 1953]

• Horizon length 

• State space 

• Action space  (for -th player)

• Reward:  (for -th player)

• Transition: 

H
|𝒮 | = S

|𝒜i | = Ai i
ri,h(sh, a1,h, …, am,h) i

(sh, a1,h, …, am,h) → sh+1

(also known as Stochastic Games)



                                       A product policy  is an -NE if





i.e. each player plays the best response of all other player’s policies.

π = {πi}i∈[m] ε
NEGap(π) := maxi∈[m] (maxπ†

i
Vπ†

i ,π−i
i − Vπ

i ) ≤ ε

Nash Equilibrium (NE):

Policies, Values, Equilibria
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• (Markov product) policy: 


• Game value (for -th player): 

ai,h ∼ πi,h( ⋅ |sh)

i Vπ
i = 𝔼π [∑H

h=1 ri,h]

🤔 What are natural learning goals in Markov Games? 

     (Generalizing “near-optimal policy” in MDPs)



Two-Player Zero-Sum Markov Games



Two-Player Zero-Sum Markov Games

NE can be learned efficiently with polynomial time and samples:

[BT02, WHL17, JYM19, SMYY19, BJ20, XCWY20, BJY20, ZKBY20, LYBJ20, 
CZG21, JLY21, HLWZ21, LCWC22…]

                                   MGs: m = 2, r1 ≡ 1 − r2Two-Player Zero-Sum



Planning Algorithm
Nash Value Iteration (Nash-VI):

• Initialize  for all 

• For 


• For all : 



• For all : 
 

V⋆
H+1(s) ≡ 0 s ∈ 𝒮

h = H, …,1
(s, a1, a2)

Q⋆
h (s, a1, a2) = rh(s, a1, a2) + (ℙhV⋆

h+1)(s, a1, a2)

s
(π⋆

1,h( ⋅ |s), π⋆
2,h( ⋅ |s)) = MatrixNash(Q⋆

h (s, ⋅ , ⋅ ))

V⋆
h (s) = ⟨π⋆

1,h( ⋅ |s) × π⋆
2,h( ⋅ |s), Q⋆

h (s, ⋅ , ⋅ )⟩

Matrix Nash subroutine:

MatrixNash(Q) = arg( max

π1∈Δ(𝒜)
min

π2∈Δ(ℬ)
⟨π1 × π2, Q⟩)

Nash-VI computes an exact NE (of a known game) in  time.
poly(H, S, A1, A2)

🤔 Learn NE in online setting (only observe trajectories from playing)?



• Initialize  for all 


• For episode :

• For :


• For all : 
 



• For all : 
 

 



• Play one episode using policy , and update model estimate

QH+1(s) ← H, Q
H+1

(s) ← 0 s ∈ 𝒮

k = 1,…, K
h = H, …,1

(s, a1, a2)
Qh(s, a1, a2) = rh(s, a1, a2) + (ℙ̂hVh+1)(s, a1, a2) + β
Q

h
(s, a1, a2) = rh(s, a1, a2) + (ℙ̂h Vh+1)(s, a1, a2) − β

s
πh( ⋅ , ⋅ |s) = MatrixCCE(Qh(s, ⋅ , ⋅ ), Q

h
(s, ⋅ , ⋅ ))

Vh(s) = ⟨πh( ⋅ , ⋅ |s), Qh(s, ⋅ , ⋅ )⟩
Vh(s) = ⟨πh( ⋅ , ⋅ |s), Q

h
(s, ⋅ , ⋅ )⟩

π

Optimistic Nash-VI
[Liu, Yu, Bai, Jin 2020]

Optimistic bonus (Bernstein + 
model-based [DLWB18])

Coarse Correlated Equilibrium 
(CCE) subroutine [XCWY20]

Empirical model estimate



Optimistic Nash-VI
[Liu, Yu, Bai, Jin 2020]

Theorem: Optimistic Nash-VI finds -NE within 
                                                      


 episodes of play.


ε
K = Õ (H3SA1A2/ε2)

✓ Learns NE in online setting with poly time & samples

✓ Natural extension of single-agent UCBVI algorithm [Azar et al. 2017]

❌ Compared with sample complexity lower bound : 
                                                     vs. 

Ω(H3S max{A1, A2}/ε2)
A1A2 max{A1, A2}

😃 I’ll show you another algorithm that

• Resolves this in the two-player zero-sum setting

• Provides new results in the                                         setting multi-player general-sum



Multi-Player General-Sum Markov Games



Multi-Player General-Sum MGs

|Joint action space| = exp(# players)“Curse of Multiagents”:



Learning NE in General-Sum MGs

☹ Theorem [Rubinstein 2016]:  samples is unavoidable for learning 
NE even in multi-player general-sum NFGs.

exp(Ω(m))

Theorem [LYBJ20]: For general-sum MGs, Multi-Nash-VI finds -NE within 
                                                      


episodes of play. 


ε
K = Õ (H4S2∏i∈[m] Ai /ε2)

Question: What equilibria can be learned with poly(m) samples?



Other Equilibria in Game Theory

Coarse Correlated Equilibrium (CCE):
No player gains by deviating from the                           . correlated policy

Correlated Equilibrium (CE):
No player gains by deviating from the correlated policy, even if the player

                                                      . observes her own sampled action



Coarse Correlated Equilibria (CCE) in NFGs

                                                               A correlated policy  is an -CCE if
π ε
CCEGap(π) := maxi∈[m] (maxπ†

i
Vπ†

i ,π−i
i − Vπ

i ) ≤ ε

Coarse Correlated Equilibrium (CCE):Coarse Correlated Equilibrium (CCE):

                             For NFGs, run no-regret algorithm for each player for T 
rounds, then  satisfies
̂π := Unif({πt}T

t=1)
CCEGap( ̂π ) = max

i∈[m]
Regi(T )/T,

No-regret to CCE:

Corollary: Each player runs an adversarial bandit algorithm (e.g. EXP3),

CCEGap( ̂π ) = maxi∈[m] Regi(T )/T ≤ Õ ( maxi∈[m] Ai /T)

                                           Sample complexity depends on  only.maxi∈[m] AiAvoids curse of multiagent:



CCE in Markov Games

                                                               A correlated policy  is an -CCE if
π ε
CCEGap(π) := maxi∈[m] (maxπ†

i
Vπ†

i ,π−i
i − Vπ

i ) ≤ ε

Coarse Correlated Equilibrium (CCE):Coarse Correlated Equilibrium (CCE):

Challenges for extending to Markov Games:
1. How to ensure efficient exploration (visit all relevant states)?

2. No-regret in MGs is intractable [Liu, Wang, Jin 2022] 

—what’s the right goal / algorithm design?

3. (Side quest) Decentralized algorithm?

😀 Were addressed in                                  MGs:  
      Nash V-Learning algorithm [Bai, Jin, Yu 2020]


two-player zero-sum



1. Maintain                 V values with incremental update (  Q-Learning) 
                
when  is visited for -th time. 

2. Update policy by                                               at :  

              

(e.g. weighted anytime FTRL). 

3. Play an episode with policy , observe transitions, rewards

4. After  episodes, output certified policy 

≈
Vh(sh) ← (1 − αt)Vh(sh) + αt(rh + Vh+1(sh+1) + bonus(t))

sh t

(h, sh)

μh( ⋅ |sh) ← Adv_Bandit_Update(ah,
H − rh − Vh+1(sh+1)

H
)

μ
K ̂μ

Nash V-Learning (max-player) for zero-sum MGs

optimistic

adversarial bandit subroutine

Ensures exploration

Achieves “per-state” regrets



1. Maintain                 V values with incremental update (  Q-Learning) 
                
when  is visited for -th time. 

2. Update policy by                                               at :  

              

(e.g. weighted anytime FTRL). 

3. Play an episode with policy , observe transitions, rewards

4. After  episodes, output certified policy 

≈
Vh(sh) ← (1 − αt)Vh(sh) + αt(rh + Vh+1(sh+1) + bonus(t))

sh t

(h, sh)

μh( ⋅ |sh) ← Adv_Bandit_Update(ah,
H − rh − Vh+1(sh+1)

H
)

μ
K ̂μ

optimistic

adversarial bandit subroutine

Theorem [Bai, Jin, Yu 2020]: Nash V-Learning finds -NE within 
                                        


 episodes of play in zero-sum MGs.


ε
K = Õ (H5S max{A1, A2}/ε2)

Nash V-Learning (max-player) for zero-sum MGs



1. Maintain                 V values with incremental update 
                
when  is visited for -th time. 

2. Update policy by                                               at :  

              

(e.g. weighted anytime FTRL). 

3. Play an episode with policy , observe transitions, rewards

4. After  episodes, output certified correlated policy 

Vi,h(sh) ← (1 − αt)Vi,h(sh) + αt(ri,h + Vi,h+1(sh+1) + bonus(t))
sh t

(h, sh)

πi,h( ⋅ |sh) ← Adv_Bandit_Update(ai,h,
H − ri,h − Vi,h+1(sh+1)

H
)

πi

K ̂π

CCE-V-Learning ( -th player) for general-sum MGsi
optimistic

adversarial bandit subroutine

Theorem [Song, Mei, Bai 2021]: CCE-V-Learning finds -CCE within 
                                             


 episodes of play in general-sum MGs.


ε
K = Õ (H5S(maxi∈[m] Ai)/ε2)



🤔 Markov CCE can be learned by VI / “stage-wise” algorithms: 
 sample complexity [Liu, Yu, Bai, Jin 2020]Õ (∏i∈[m] Ai /ε2)

✓ Avoids curse-of-multiagent:   samples

✓ Learns in online/exploration setting

✓ Decentralized algorithm

poly(H, S, maxi∈[m] Ai,1/ε2)

❌ Output policy is non-Markov (history-dependent)

 by recent work of [Daskalakis, Golowich, Zhang 2022]Õ (maxi∈[m] Ai /ε3)

Theorem [Song, Mei, Bai 2021]: CCE-V-Learning finds -CCE within 
                                             


 episodes of play in general-sum MGs.


ε
K = Õ (H5S(maxi∈[m] Ai)/ε2)

CCE-V-Learning ( -th player) for general-sum MGsi



2’.    Update policy by                                               at :  

              

that minimizes weighted                     (e.g. mixed-expert FTRL [Ito 2020])

(h, sh)

πi,h( ⋅ |sh) ← Adv_Bandit_Update(ai,h,
H − ri,h − Vi,h+1(sh+1)

H
)

adversarial bandit subroutine

swap regret

adversarial bandit subroutine
Algorithm (CE-V-Learning, -th player):i

Extension to CE

Theorem [Song, Mei, Bai 2021]: CE-V-Learning finds -CE within 
                                             


 episodes of play in general-sum MGs.


ε
K = Õ (H6S(maxi∈[m] A2

i )/ε2)



Literature note
1. When Can We Learn General-Sum Markov Games with A Large Number of Players 

Sample-Efficiently? 
Ziang Song, Song Mei, Yu Bai. arXiv:2110.04184. 

 Contains CE/CCE results. 

2. V-Learning—A Simple, Efficient, Decentralized Algorithm for Multiagent RL. 
Chi Jin, Qinghua Liu, Yuanhao Wang, Tiancheng Yu. arXiv:2110.14555. 

 Contains CE/CCE results, with -better rate for CE (different swap-regret alg.) 

3. Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games. 
Weichao Mao, Tamer Başar. arXiv:2110.05682. 

 Contains CCE results.

→

→ H

→

All 3 papers are based on the                      algorithm proposed inV-Learning

Near-Optimal Reinforcement Learning with Self-Play. 
Yu Bai, Chi Jin, Tiancheng Yu. NeurIPS 2020. 
(NE for two-player zero-sum Markov Games)



Faster Convergence via Optimistic Algorithms



Learning NFGs under full-information feedback
Hedge (FTRL) Algorithm:

For :

• Receive utility vector based on opponents’ strategies: 

                                              

• Update strategy by exponential weights: 

                                     

t = 1,…, T

ut
i(a) = ri(a, πt

−i)

πt+1
i (a) ∝a πt

i(a) ⋅ exp(ηut
i(a))

Hedge achieves  regret against any seq. of opponents (e.g. [CBL06])

 
Corollary: Let

• Learns CCE in NFGs with  convergence rate

• Learns NE in two-player zero-sum NFGs with  convergence rate

O( T )

O(T−1/2)
O(T−1/2)

all players play Hedge against each other,



Issues with Hedge approach

Hedge regret bound works for any 


Analysis does not use that

adversarial opponent

opponents are also playing Hedge

🤔 Can we get faster convergence to NE/CCE if we use the fact that 
everyone is playing the same no-regret algorithm?



Optimistic Hedge / OFTRL

• Update strategy by exponential weights over                                  : 
                       πt+1

i (a) ∝a πt
i(a) ⋅ exp(η(2ut

i(a) − ut−1
i (a)))

Optimistic Hedge (OFTRL) Algorithm:

lookahead adjusted utility vector

Intuition: When  changes slowly in ,
ut
i t

2ut
i − ut−1

i = ut
i+(ut

i − ut−1
i ) ≈ ut

i+(ut+1
i − ut

i ) = ut+1
i

Image source: 

Min-Max Optimization (Simons Institute), Costis Daskalakis,, 2022.



Regret Bounds of Optimistic Algorithms in Games

Breakthrough paper:



Faster Convergence to NE/CCE in NFGs

OFTRL achieves  regret when played by everyone in a game.

Corollary: Let

• Learn CCE with  convergence rate

• Learn NE in two-player zero-sum games with  convergence rate*


* Also well-established e.g. [RS13b] by a more direct analysis for zero-sum case

O(log4 T ) = Õ (1)

Õ (T−1)
Õ (T−1)

all players play OFTRL against each other,

Question: Extend to Markov Games?

[Daskalakis, Fishelson, Golowich 2021]



Faster Convergence to NE/CCE in Markov Games

Theorem: We obtain faster convergence results for MGs:

•  for learning NE in two-player zero-sum MGs

•  for learning CCE in multi-player general-sum MGs

Algorithm is natural:             +


Õ (T{−5/6,−1})
Õ (T−3/4)

OFTRL smooth value updates

Immediate                 s:

[Zhang*, Liu*, Wang, Xiong, Li, Bai NeurIPS 2022]



Advanced Topics



Imperfect Information / Partial Observability:  
Players can only observe partial information about the true underlying game 

Image source (right): 

No-Press Diplomacy from Scratch, Bakhtin et al. 2021.

Imperfect Information

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019], 
Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], …

Formulation:                                                          Imperfect-Information Extensive-Form Games (EFGs)



Learning EFGs from bandit feedback

Algorithm Equilibrium Sample Complexity

Farina et al. [2021] CCE

Kozuno et al. [2021] CCE

Bai, Jin, Mei, Yu [2022] CCE

Song, Mei, Bai [2022] K-EFCE*

Bai, Jin, Mei, Song, Yu [2022] EFCE

Õ (X4A3/ε2)

Õ (X2A /ε2)

Õ (XA /ε2)

Õ (XAK+1/ε2)

Õ (XA /ε2)

: number of information sets; : number of actions

* Newly defined equilibrium, {K-EFCE} {1-EFCE} {EFCE}

X A
⊂ ⊂

Building on two main EFG algorithms (full-information setting):

•                                      [Hoda et al. 2010, Kroer et al. 2015]

•                                                          [Zinkevich et al. 2007, Celli et al. 2020]


Heavily rely on                       of EFGs, which do not hold in general POMGs.

Online Mirror Descent
Counterfactual Regret Minimization

tree structure



Dominance and Rationalizability

CCE (and approximate CE) can be supported entirely on                               !

[Viossat & Zapechelnyuk 2013]

dominated actions



Learning Rationalizable Equilibria
[Wang, Kong, Bai, Jin 2022]

We design the first algorithms for efficiently learning -CE/CCE supported 
on -rationalizable actions in multi-player NFGs from bandit feedback.

(Related: Wu et al. [2021] find any rationalizable strategy, not nece. CE/CCE)

ε
Δ

Def: An action is                       if it survives                                                  . 

[Bernheim 1984; Pearce 1984]

rationalizable Iterative Dominance Elimination



Conclusion



My Excitement About MARL/Games:

1. Single-agent RL results can be (non-trivially) extended to MARL/games

• e.g. Learning NE/CE/CCE in Markov Games 

2. Games pose interesting questions to {online learning, bandits, RL…}

• e.g. Faster no-regret learning when everyone runs a no-regret algorithm 

3. Games admit unique questions that are potentially rich for ML theory:

• e.g. Rationalizability



Open Questions

Thank you!

• Function approximation

• “Reduce” to centralized single-agent problem

• Decentralized / independent function approximation?


• Imperfect information / partial observability

• EFGs

• General Partially Observable Markov Games


• Solution concepts beyond NE/CE/CCE

• General -equilibria

• Stackelberg Equilibria

• Economics connections (e.g. rationalizability, contract theory)


• Other types of games

• Markov potential games

• Congestion games

Φ
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