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Multi-Agent Reinforcement Learning

< (NLIN

sequential decisions multi-agent

A relatively new field, with unique challenges and opportunities
for both theory/empirical research.
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Normal-Form Games (NFGs)
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Multi-player Normal-Form Games (NFGs):

Players {1,...,m}

—ach player i chooses their action a; € <f; simultaneously

—ach player i receives reward r(ay, ..

., a,) € [0,1] (general-sum)



Markov Games (MGs)

[Shapley 1953] (also known as Stochastic Games)
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Finite-horizon General-Sum Markov Games with m players:
e Horizon length H

e State space|S| =S

e Action space | ;| = A, (for i-th player)

e Reward: r; (s, ay p, ..., a, ) (for i-th player)

o Transition: (sy,, a; j, .., Gy ) = Sy



Policies, Values, Equilibria
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e (Markov product) policy: a; ;, ~ m; (- | s;)

o Game value (for i-th player): V¥ = [ [Z,?:l ”i,h]

Nash Equilibrium (NE): A product policy z = {7;},c(,,, IS an €-NE if

NEGap(z) := max;,, <maxﬂ; Vf;’”"' - Vi ) <¢€
..e. each player plays the best response of all other player’s policies.

&) What are natural learning goals in Markov Games?
(Generalizing “near-optimal policy” in MDPs)



Two-Player Zero-Sum Markov Games



Two-Player Zero-Sum Markov Games

Two-Player Zero-Sum MGs:m=2,r =1 -r,

NE can be learned efficiently with polynomial time and samples:

BT02, WHL17, JYM19, SMYY19, BJ20, XCWY20, BJY20, ZKBY20, LYBJ20,
CZG21, JLY21, HLWZ21, LOWC22.. ] 4N 4N



Planning Algorithm

Nash Value Iteration (Nash-VI):

e Initialize V};, (s)=0foralls e §
e Forh=H,...,1
e [Forall (s,a,a,):
QX (s, ay, ay) = 1y(s, ay,a,) + (P, VX )(s, ay, ay)
e Foralls:
(nl’fh( - |s), ﬂz’jh( - |5)) = MatrixNash(Q(s, - , - ))

V;;(S)= <ﬂfjh( |S)Xﬂ3jh( |S)9Q}T(Saa)>

Matrix Nash subroutine:

MatrixNash(Q) = arg( max min (7 X 7, Q))
1, EAL) 1,EA(B)

( Nash-VI computes an exact NE (of a known game) in poly(H, S, A, A,) time. )

&> Learn NE in online setting (only observe trajectories from playing)?



Optimistic Nash-VI
[Liu, Yu, Bai, Jin 2020]

o Initialize Q. ((s) < H’QH+1(S) —~Oforalse &

e [orepisodek =1,...,K:
e Forh=H,...1:
e [orall(s,a;,a,))
Q,(s,ay,a,) = r,(s,a,a,) + ([FADthH)(S, a;,a,) + f

Qh(s, ala Clz) — rh(Sa ala a2) + (H,:\Dhyh+1)(sa ala az) T 16

LEmpiricaI model estimate ]

: Optimistic bonus (Bernstein +
* Foralls: | B model-based [DLWB18)) ]
(5 - |5) = MatrixCCE(Qy (s, -+ ), @ (5,5 +))  +
_ _ N
Vi (s) = <7Th( o 8), Oy, - ) Coarse Correlated Equilibrium
Vh(s) — <ﬂh( 8,0 (s, -, ) (CCE) subroutine [XCWY?20]
4 g ]

e Play one episode using policy z, and update model estimate



Optimistic Nash-VI
[Liu, Yu, Bai, Jin 2020]

" Theorem: Optimistic Nash-VI finds e-NE within

Kepisooles of play.

v Learns NE in online setting with poly time & samples
v Natural extension of single-agent UCBVI algorithm [Azar et al. 2017]

X Compared with sample complexity lower bound Q(H?S max{Al,Az}/gz):
AA, vs. max{A;, A}

@ I'll show you another algorithm that

e Resolves this in the two-player zero-sum setting
e Provides new results in the multi-player general-sum setting




Multi-Player General-Sum Markov Games



Multi-Player General-Sum MGs

“Curse of Multiagents”: |Joint action space| = exp(# players)




Learning NE in General-Sum MGs

rTheorem ILYBJ20]: For general-sum MGs, Multi-Nash-VI finds e-NE within A

K= O(H*S*[]_, Ale?)

i€[m] !

_episodes of play.

& Theorem [Rubinstein 2016]: exp(£2(m)) samples is unavoidable for learning
NE even in multi-player general-sum NFGs.

Question: What equilibria can be learned with poly(m) samples?



Other Equilibria in Game Theory

CCE CE Nash

Coarse Correlated Equilibrium (CCE):
No player gains by deviating from the correlated policy .

Correlated Equilibrium (CE):
No player gains by deviating from the correlated policy, even if the player
observes her own sampled action .




Coarse Correlated Equilibria (CCE) in NFGs

Coarse Correlated Equilibrium (CCE): A correlated policy nis an e-CCE if
CCEGap(n) = max,c(,, <max7ﬁ R v;f> <e

l

No-regret to CCE: For NFGs, run no-regret algorithm for each player for T
rounds, then 7 := Unif({z'}_ ) satisfies
CCEGap(7) = max Reg.(T)/T,

1€[m]

Corollary: Each player runs an adversarial bandit algorithm (e.g. EXP3),
CCEGap(7) = max;¢,,; Regi(T)/T < 5(\/ max,er,,1 A;/ T)

Avoids curse of multiagent: Sample complexity depends on max;,,; A; only.




CCE in Markov Games

Coarse Correlated Equilibrium (CCE): A correlated policy nis an e-CCE if
CCEGap(n) := maXx;c,, <maxﬂ; Vl-”;’”"' - Vi ) <¢€

Challenges for extending to Markov Games:

1. How to ensure efficient exploration (visit all relevant states)?
2. No-regret in MGs is intractable [Liu, Wang, Jin 2022]

—what’s the right goal / algorithm design?
3. (Side quest) Decentralized algorithm?

-
& Were addressed in two-player zero-sum MGs:

Nash V-Learning algorithm [Bai, Jin, Yu 2020]




Nash V-Learning (max-player) for zero-sum MGs

1.

Maintain optimistic V values with incremental update (= Q-Learning)
Vh(sh) <« (1 — at)Vh(Sh) + at(rh + Vh+1(Sh+1) + bOHUS(t))

when s, is visited for #-th time. YEnsures exploration

Update policy by adversarial bandit subroutine at (4, s;,):

H—r, -V, (s
w,( - |s;) < Adv_Bandit_Update(a, h Hh+1( h+1))

(e.g. weighted anytime FTRL). YAChieves “per-state” regrets

Play an episode with policy u, observe transitions, rewards
After K episodes, output certified policy i



Nash V-Learning (max-player) for zero-sum MGs

1. Maintain optimistic V values with incremental update (=~ Q-Learning)
V.(sp) < (1 —a)V,(s,) + a(r, + V. (s,,1) + bonus(?))
when s, Is visited for #-th time.

2. Update policy by adversarial bandit subroutine at (4, s,,):

H—r — V S
w,( - |s;) < Adv_Bandit_Update(a, h Hh+1( h+1))

(e.g. weighted anytime FTRL).

3. Play an episode with policy u, observe transitions, rewards
4. After K episodes, output certified policy i

rTheorem [Bai, Jin, Yu 2020]: Nash V-Learning finds e-NE within
K = O (H’Smax{A,,A,}/e?)

episodes of play in zero-sum MGs.
L




CCE-V-Learning (i-th player) for general-sum MGs

1. Maintain optimistic V values with incremental update
Viu(sy) < (1 —a)V,,(s) + ariy + Vi1 (8541) + bonus(2))
when s, is visited for ¢-th time.

2. Update policy by adversarial bandit subroutine at (4, s;,):

7 (- |'s,) < Adv_Bandit_Update(q; , d H’hH ] )

(e.g. weighted anytime FTRL).

3. Play an episode with policy r;, observe transitions, rewards
4. After K episodes, output certified correlated policy ©

" Theorem [Song, Mei, Bai 2021]: CCE-V-Learning finds e-CCE within
K=0 (HSS(maxie[m] Ai)/ez)
Kepisooles of play in general-sum MGs.




CCE-V-Learning (i-th player) for general-sum MGs

rTheorem [Song, Mei, Bai 2021]: CCE-V-Learning finds e-CCE within
Kepisooles of play in general-sum MGs.

v Avoids curse-of-multiagent: poly(H, S, max;c,,A; /&%) samples

v Learns in online/exploration setting
v Decentralized algorithm

X Output policy is non-Markov (history-dependent)

& Markov CCE can be learned by VI / “stage-wise” algorithms:

5(Hie[m]Ai/ez) sample complexity [Liu, Yu, Bai, Jin 2020]

O (max;(,, 1 A;/ e7) by recent work of [Daskalakis, Golowich, Zhang 2022]



Extension to CE

Algorithm (CE-V-Learning, i-th player):

2'.  Update policy by adversarial bandit subroutine at (4, s,):

7 (- |'s,) < Adv_Bandit_Update(q; , d H’hH ] )

that minimizes weighted swap regret (e.g. mixed-expert FTRL [ito 2020])

rTheorem [Song, Mei, Bai 2021]: CE-V-Learning finds e-CE within
K=0 (H 6S(maxi€[m] A%/ 52)
Kepisooles of play in general-sum MGs.




Literature note

1. When Can We Learn General-Sum Markov Games with A Large Number of Players
Sample-Efficiently?
Ziang Song, Song Mei, Yu Bai. arXiv:2110.04184.
— Contains CE/CCE results.

2. V-Learning—A Simple, Efficient, Decentralized Algorithm for Multiagent RL.
Chi Jin, Qinghua Liu, Yuanhao Wang, Tiancheng Yu. arXiv:2110.14555.

— Contains CE/CCE results, with H-better rate for CE (different swap-regret alg.)

3. Provably Efficient Reinforcement Learning in Decentralized General-Sum Markov Games.
Weichao Mao, Tamer Basar. arXiv:2110.05682.

— Contains CCE results.

All 3 papers are based on the V-L_earning algorithm proposed in

Near-Optimal Reinforcement Learning with Self-Play.
Yu Bai, Chi Jin, Tiancheng Yu. NeurlPS 2020.
(NE for two-player zero-sum Markov Games)



Faster Convergence via Optimistic Algorithms



Learning NFGs under full-information feedback

Hedge (FTRL) Algorithm:

Fort=1,....T:

e Recelve utility vector based on opponents’ strategies:
u/(a) = r{a, n’,)

e Update strategy by exponential weights:

7t (a) x, #(a) - exp(nul(a))

X
[ Hedge achieves 0(\/7) regret against any seq. of opponents (e.g. [CBL0G])

Corollary: Let all players play Hedge against each other,
e Learns CCE in NFGs with O(T~'?) convergence rate

e Learns NE in two-player zero-sum NFGs with O(T~'?) convergence rate
\_ J




Issues with Hedge approach

Hedge regret bound works for any adversarial opponent

Analysis does not use that opponents are also playing Hedge

& Can we get faster convergence to NE/CCE if we use the fact that
everyone is playing the same no-regret algorithm??



Optimistic Hedge / OFTRL

Optimistic Hedge (OFTRL) Algorithm:

e Update strategy by exponential weights over lookahead adjusted utility vector
z 't (a) x, /(@) - exp(nuj(a) — u~'(a)))

Intuition: When u! changes slowly in ¢,

2uj = uf™" = i+ — ™)~ uf+ " = uf) = uf!

£t — £} £ — 4

l

4
3/ 7

origin

Image source:
Min-Max Optimization (Simons Institute), Costis Daskalakis,, 2022.



Regret Bounds of Optimistic Algorithms in Games

Table 1: Overview of prior work on fast rates for learning in games. m denotes the number of players, and
n denotes the number of actions per player (assumed to be the same for all players). For Optimistic Hedge,
the adversarial regret bounds in the right-hand column are obtained via a choice of adaptive step-sizes. The

O(-) notation hides factors that are polynomial in logT'.

Algorithm Setting

Regret in games

Adversarial regret

Hedge (& many
other algs.)

multi-player,
general-sum

O(v/Tlogn) [CBLOG]

O(v/Tlogn) [CBLOG]

Excessive Gap
Technique

2-player,
0-sum

O(logn(log T + log®?n))
[DDK11]

O(vTlogn)
[DDK11]

DS-OptMD, OptDA  2-player, 0-sum

log®M (n) [HAM21]

\/Tlogo(l)(n) [HAM21]

multi-player,

Optimistic Hedge general-sum

O(logn - v/m - T'/4)
[RS13b, SALS15]

O(v/Tlogn)
[RS13b, SALS15]

2-player,

Optimistic Hedge general-sum

O(log®/¢ n - T1/6) [CP20]

~

O(v/Tlogn)

multi-player,

Optimistic Hedge general-sum

O(logn -m -log*T)
(Theorem 3.1)

O(v/Tlogn)
(Corollary D.1)

Breakthrough paper:

e Near-Optimal No-Regret Learning in General Games.
Constantinos Daskalakis, Maxwell Fishelson, and Noah Golowich.
In NeurlPS 2021 (Oral presentation). [conf]

Near-optimal no-regret learning in general games
C Daskalakis, M Fishelson... - Advances in Neural ..., 2021 - proceedings.neurips.cc

Abstract We show that Optimistic Hedge--a common variant of multiplicative-weights-

updates with recency bias--attains ${\rm poly}(\log T) $ regret in multi-player general-sum
games. In particular, when every player of the game uses Optimistic Hedge to iteratively
update her action in response to the history of play so far, then after $ T $ rounds of
interaction, each player experiences total regret that is ${\rm poly}(\log T) $. Our bound
improves, exponentially, the $ O (T*{1/2}) $ regret attainable by standard no-regret learners ...
Y% Save PP Cite Cited by 29 Related articles All 4 versions 99



Faster Convergence to NE/CCE in NFGs

|[Daskalakis, Fishelson, Golowich 2021]

i OFTRL achieves O(log* T) = 5(1) regret when played by everyone in a game.\
Corollary: Let all players play OFTRL against each other,
e | earn CCE with B(T‘l) convergence rate

e | earn NE In two-player zero-sum games with 5(T‘1) convergence rate”

* Also well-established e.g. [RS13b] by a more direct analysis for zero-sum case
- J

Question: Extend to Markov Games?



Faster Convergence to NE/CCE in Markov Games
|[Zhang*, Liu*, Wang, Xiong, Li, Bai NeurlPS 2022]

g Theorem: \We obtain faster convergence results for MGs:

o O(T'=5%=1}) for learning NE in two-player zero-sum MGs

e O(T3") for learning CCE in multi-player general-sum MGs
| Algorithm is natural: OFTRL + smooth value updates

»
-

Immediate @ﬁﬂLE’ﬁ\?,ﬁP S:

O(T~') Convergence of Optimistic-Follow-the-Regularized-Leader

Faster Last-iterate Convergence of Policy Optimization in
in Two-Player Zero-Sum Markov Games

Zero-Sum Markov Games

Yuepeng Yang* Cong Ma*
September 27, 2022 Shicong Cen'*  Yuejie Chilf Simon S. Du?>**  Lin Xiao®$
!Carnegie Mellon University
N 2University of Washington
stract
We prove that optimistic-follow-the-regularized-leader (OFTRL), together with smooth value up- 3Meta AI ResearCh

dates, finds an O(T'~!)-approximate Nash equilibrium in 7" iterations for two-player zero-sum Markov

games with full information. This improves the O~(T’5/ %) convergence rate recently shown in the pa-

per [ZLW+22]. The refined analysis hinges on two essential ingredients. First, the sum of the regrets OCtOber 5 2022
of the two players, though not necessarily non-negative as in normal-form games, is approximately non- ?
negative in Markov games. This property allows us to bound the second-order path lengths of the learning

dynamics. Second, we prove a tighter algebraic inequality regarding the weights deployed by OFTRL

that shaves an extra logT factor. This crucial improvement enables the inductive analysis that leads to
the final O(T""") rate.

Regret Minimization and Convergence to Equilibria
in General-sum Markov Games

Liad Erez!* Tal Lancewickil* Uri Sherman®* Tomer Koren'?

Yishay Mansour!?2

August 9, 2022



Advanced Topics



Imperfect Information

Imperfect Information / Partial Observability:
Players can only observe partial information about the true underlying game

Recent advances in Poker [Moravcik et al. 2017, Brown & Sandholm 2018, 2019],
Bridge [Tian et al. 2020], Diplomacy [Bakhtin et al. 2021], ...

Formulation: Imperfect-Information Extensive-Form Games (EFGs)

Image source (right):
No-Press Diplomacy from Scratch, Bakhtin et al. 2021.



Learning EFGs from bandit feedback

Algorithm Equilibrium Sample Complexity
Farina et al. [2021] CCE O (X*A3/e?)
Kozuno et al. [2021] CCE 0 (X%A/e?)
Bai, Jin, Mei, Yu [2022] CCE O (XAle?)
Song, Mei, Bai [2022] K-EFCE* O (XAKt1 /2
Bai, Jin, Mei, Song, Yu [2022] EFCE O(XAle?)

X: number of information sets; A: number of actions
*Newly defined equilibrium, {K-EFCE}C{1-EFCE}C{EFCE}

Building on two main EFG algorithms (full-information setting):
e Online Mirror Descent [Hoda et al. 2010, Kroer et al. 2015]

®* (Counterfactual Regret Minimization [Zinkevich et al. 2007, Celli et al. 2020]

Heavily rely on tree structure of EFGs, which do not hold in general POMGs.




Dominance and Rationalizability

CCE (and approximate CE) can be supported entirely on dominated actions !
[Viossat & Zapechelnyuk 201 3]

a; | 1,1 ] 1,1 | 1,0 51
0

a, | 1,1 | 1,1

aj O, 1 O, 5

a, | 0,501 | 0, ‘\4,4‘ﬂ




Learning Rationalizable Equilibria

[Wang, Kong, Bai, Jin 2022]

Def: An action is rationalizable if it survives lterative Dominance Elimination .

[Bernheim 1984; Pearce 1984]

r

.

~
We design the first algorithms for efficiently learning e-CE/CCE supported

on A-rationalizable actions in multi-player NFGs from bandit feedback.
(Related: Wu et al. [2021] find any rationalizable strategy, not nece. CE/CCE)

.

Task Sample Complexity
Find all rationalizable actions (Proposition 3) QAN
Find one rationalizable action profile (Theorem 4) O (LAV—ZA)

Learn rationalizable
equilibria

e-CCE (Theorem 7)

0 (R +34)

e-CE (Theorem 12)

~ ( LNA NA?
0 ( Az T min{e?,A%}

)

Table 1: Summary of main results. Here [V is the number of players, A is the number of actions per player,
L < N A is the minimum elimination length and A is the error we allow for rationalizability.



Conclusion



My Excitement About MARL/Games:

1. Single-agent RL results can be (non-trivially) extended to MARL/games
¢ c.g. Learning NE/CE/CCE in Markov Games

2. Games pose interesting questions to {online learning, bandits, RL...}
® c.g. Faster no-regret learning when everyone runs a no-regret algorithm

3. Games admit unique questions that are potentially rich for ML theory:
e ¢.g. Rationalizability



Open Questions

¢ Function approximation

e “Reduce” to centralized single-agent problem

e Decentralized / independent function approximation?
e Imperfect information / partial observability

e EFGs

e (General Partially Observable Markov Games
e Solution concepts beyond NE/CE/CCE

e General ®-equilibria

e Stackelberg Equilibria

e Economics connections (e.g. rationalizability, contract theory)
e Other types of games

e Markov potential games

e (Congestion games

Thank you!
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Certified Policies

Algorithm 2 Certified correlated policy 7 for general-sum MGs
1: Sample k < Uniform([K]).
2: forsteph=1,...,H do
3:  Observe sy, and set t + NF(sp,) (the value of Nj(s) at the beginning of the k’th episode).

Sample [ € [t] with P(l = j) = o/ (c.f. Eq. (3)).
Update k < khl (sp) (the episode at the end of which the state sj is observed exactly [ times).

Jointly take action (ap1,an2,---,anm) ~ [liey #¥.(-|sn), where uf (-|sp) is the policy
ph.i(+|sp) at the beginning of the k’th episode. | |




