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Partially Observable Markov Decision Processes (POMDPs)
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Partially Observable Markov Decision Processes (POMDPs)

POMDPs = MDPs + Observations = HMMs (Hidden Markov Models) + Actions

Figure credit: Song Mei
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Tabular MDPs (S states, A actions, H steps):
e-optimal policy can be found in poly(H, S, A,1/¢) time and samples

[Bellman '57, Howard '60, Bertsekas ‘87, Kearns & Singh 02, Azar et al. ’17, Sidford et al.
'18, Jinetal. '18...]

Tabular POMDPs (S latent states, O observations, A actions, H steps):

e Reason about belief over states
e Policies are history-dependent in general , requires 2°*") memory to store
e All while exploring the environment




Computational and Statistical Hardness

Computational hardness  Planning is already hard:




Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]



Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]
e | earning optimal memoryless policy is NP-hard [Viassis et al. "12]



Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]
e | earning optimal memoryless policy is NP-hard [Viassis et al. "12]

Statistical hardness  (with co compute):




Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]
e | earning optimal memoryless policy is NP-hard [Viassis et al. "12]

Statistical hardness  (with co compute):

e | earning optimal policy requires exp(£2(H)) samples in the worst-case
[Krishnamurthy et al. ’106]



Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]
e | earning optimal memoryless policy is NP-hard [Viassis et al. "12]

Statistical hardness  (with co compute):

e | earning optimal policy requires exp(£2(H)) samples in the worst-case
Krishnamurthy et al. ’106]

e Hard instance: “non-revealing combination lock™ with “dummy observations”




Computational and Statistical Hardness

Computational hardness  Planning is already hard:

e (Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis '87]
e | earning optimal memoryless policy is NP-hard [Viassis et al. "12]

Statistical hardness  (with co compute):

e | earning optimal policy requires exp(£2(H)) samples in the worst-case

Krishnamurthy et al. ’106]

Hard instance: “non-revealing combination lock” with “dummy observations”

-

Question: What are “tractable” subclasses of POMDPs that can be learned
with poly samples, how sharply, and with what algorithms?

~




Tractable Subclasses of POMDPs



Example 1: Revealing (Observable) POMDPs
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probabilistically distinguishable from their emitted observations

Rules out “uninformative” observations.
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Desire: Emission matrices have full column rank ==> different states are
probabilistically distinguishable from their emitted observations

Rules out “uninformative” observations.

Single-step a-revealing POMDPs [Jin et al. ’20]: The emission matrices at
all step h € [H] satisfy

1
1Ol <a™,

(Il - || is some operator norm, and A™ is any left inverse of matrix A)



Multi-step Revealing POMDPs
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Multi-step Revealing POMDPs
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m-step a-revealing POMDPs [Liu et al. ’22a]: The m-step emission-action matrices
at all step h € [H] satisty

—1
Ml < a,

(Il - || is some operator norm, and A™ is any left inverse of matrix A)
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Example 2: Decodable POMDPs
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Desire: Latent state can be uniguely determined from the observation.

Block MDPs [Du et al. *19]: There exists an (unknown) decoder y;* at every
step h € [H] such that

s, = W (o).



Multi-Step Decodable POMDPs




Multi-Step Decodable POMDPs

m-step decodable MDPs [Efroni et al. 22]: There exists an (unknown)
decoder y;* at every step h € [H] such that

. *
Sp = Y, (Oh—ma1s Q1> -+ +» Op—1> Ap_15 Op).
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Existing Work

Learning with polynomial samples has been shown to be possible within
revealing POMDPs, decodable POMDPs, etc.

However:

Different Algorithms for each class of POMDPs

Case-by-case analysis and no unification of the proof technigques

Other tractable classes & tasks:

e Reactive POMDPs [Jiang et al. "17]

o | atent MDPs [Kwon et al. ’21, Zhou et al. ’22]

e Future-sufficient low-rank POMDPSs [Wang et al. '22]
e [inear POMDPs [Cai et al. ’22]

e | earning short-memory policies [Uehara et al. 22]

A partial unification: Regular PSRs [Zhan et al. '22]



Unified Condition: B-Stability
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B-Representation of POMDPs
[Jaeger '00]

B-representation: Any set of matrices {B,(0,a)},, , and vector yx; such that for

any trajectory z, policy x,
PZ(T) = n(7) X [BH(OHa aH)BH—l(OH—la aH_l)"'B1(01, a1)M1] ,
Above,

H
(T) = Hh=1”(0h|flzh—1»0h)

Example: Single-step revealing POMDPs

LSXS latent transition matrix
Bh(Oh’ Clh) — ®h+1—|]_h,ahdiag(®h(0h| . ))@;l_

OxS emission matrix SxS diagonal matrix of
emission probabilities of oy,

To verity, for any fixed #,
B, (7;,) = ®h+Jh,ahdiag(@h(0h| '))—H_h—l,ah_ldiag(@h(Oh—ll '))“'—[l_l,aldiag(@h(Oll D)

iIndeed yields emission probabillities
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B-Representations of POMDPs
[Jaeger ’00]

More Generally,
B-representation <==> full dynamics of the observables

Predictive State Representations (PSRs) [Littman & Sutton "01]
e Any Sequential Decision Process (SDP) that admits a B-representation

e Any Sequential Decision Process (SDP) that admits core test sets
(two equivalent definitions)

A generalization of POMDPSs.
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B-Stability Condition

[Chen, Bai, Mei '22]

rA POMDP/PSR is called B-Stable with parameter A; > 0, if for all h € [H],

IBrnllenm < A,
.

A certain operator norm

where operator

Byt q— [Brn(Thn)ql;, ,, = [BH(0H9 agp). - -By(0p, ah)CI]

(Oa)h:H
\_
Estimation error of B matrices
|ﬂtUitiOﬂ' (Algorithm can bound)
' \V4
0* 0 o* 0 9*
||9gH;h(Bh_1;1/41 o Bh_l;lﬂl)“l‘[ < AB”(Bh_l;l _ Bh_l;l)ﬂlll*

Error from performance difference
(for bounding Regret/PAC)
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Algorithms and Guarantees
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Algorithms for B-Stable POMDP/PSRs

Three model-based algorithms with similar principles :

1. Use policy derived from belief (optimism / posterior sampling) to collect data
2. Update belief about true model, such as confidence set or posterior

Note the principle is general, not limited to POMDP/PSRs.

* For details on the connections/differences between the 3 algorithms, see our
related paper [Chen, Mei, Bai '22b]
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Algorithm 1: OMLE

OMLE (Optimistic Maximum Likelihood Estimation) [Liu et al. ’223]

In each Iteration Kk,

1. Set 7* = arg max max V; to be optimistic greedy policy wrt B~
T 0€ERB

. (« : . 9 k _ k
2. Play corresponding “exploration policies™ 7, .., = 11}, (")

3. Update confidence set ! given data

Gk _ {9 Y e 102 PE@) = maxy T log PR(r) ﬁ}
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Algorithm 2: E2D, Based on Decision-Estimation Coefficients (DECs)

E2D (Estimation-To-Decisions) [Chen et al. '22b, Foster et al. '21]

In each iteration K,
1. Set policy distributions (pX, pk,) to minimize risk V4'(-, -

2. Sample and play exploration policy z* ~ p¥, , obtain trajectory z*
3. Update “tempered posterior” of model:
1 O) o, 1HO) - exp (n log ng(rk)>

. 1 vk
Output policy p,y = = Zkzl Pou

Risk functional determined by the Explorative DEC:
Vﬂk(pexp? pout) — [Eanout[Vge o Vg] o }/[EJZNPexp[EQkN,uk[DI%I(Pﬂ’ ng)]




Algorithm 3: MOPS

MOPS (Model-based Optimistic Posterior Sampling) [Agarwal & Zhang ’22]

Algorithm 4 MODEL-BASED OPTIMISTIC POSTERIOR SAMPLING (Agarwal and Zhang, 2022)

. Input: Parameters v > 0, 7 € (0,1/2). An 1/T-optimistic cover (P, ©y)

. Initialize: p' = Unif(0Q,)

cfort=1,...,T do

Sample 6 ~ p* and h' ~ Unif({0,1,--- , H — 1}).

Set ¢ = myt opt Unif(A) ope 1 Unif (Ug p41), execute 7° and observe 7.
Compute uttt e A(6) by

t

pt1(6) ocg ' () exp ( N (Y Vi(me) + mlog Py (TS)))-

s=1

Output: Policy 7oyt 1= % Z;F:l Pout (14!), where pout(+) is defined in (46).

Similar as E2D, except for using optimistic posterior.
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Main Result for Learning B-Stable POMDP/PSRs

" Thm [Chen, Bai, Mei '22a]: Algorithms {OMLE, E2D, MOPS} can all learn a A
Ag-stable POMDP/PSR within
K = O(dAU,A%/€?)
ke|0|sodes of play. )

Above,

e d:PSRrank(d < S for POMDPs)
e A:number of actions

e U,: number of core actions (equals A"~ for m-step revealing/decodable)

First E rate (previous works at least E on their stability/regularity parameters)



Instantiations to Concrete Subclasses

Table 1: Comparisons of sample complexities for learning an € near-optimal policy in POMDPs and PSRs.
Definitions of the problem parameters can be found in Section 3.2. The last three rows refer to the m-step versions of
the problem classes (e.g. the third row considers m-step are-revealing POMDPs). The current best results within the
last four rows are due to Zhan et al. (2022); Liu et al. (2022a); Wang et al. (2022); Efroni et al. (2022) respectively".

All results are scaled to the setting with total reward in [0, 1].

Problem Class Current Best Ours
Ag-stable PSR - O (dpsrAUAH? log No - A /<)
apsr-regular PSR O (dpsrA* U2 H® log(Ne O)/(apse?)) O (dpsrAUZ H? log No /(cpse?))
ayey-revealing tabular POMDP O (S*A°™*H®log No/(aree?)) O (S?A™H?log No/(azye?))
v-future-suff. rank-dians POMDP || O (dians A°™ T2 H? (log No )? - 1% [e?) O (derans A H? log Ne - v°/€?)
decodable rank-dirans POMDP O (dirans A™ H? log Ng /€?) O (dirans A™ H? log N /€%)

log /g = log-covering number of model class

Significantly sharper rates on revealing POMDPs, decodable POMDPs, ...
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Overview of Techniques

1. Performance decomposition into B-errors
Relate regret/PAC learning objective to estimation error in “B operators”

2. Bounding squared B-errors by squared Hellinger distance , using B-stability.
All 3 algorithms control this squared Hellinger distance by algorithm design.

3. A sharp generalized ¢,-Eluder argument to bridge step 1 & 2

* Concurrent work [Liu et al. '22b] shows B-errors <= TV distance in their step 2, and
performs ¢ ;-Eluder argument in their step 3, which gives similar result but worse rate.
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Towards Fine-Grained Studies

Understanding fundamental limits <== studying lower bounds

e |n MDPs, lower bounds [Jaksch et al. '10, Azar et al. ’13] predated the
matching upper bounds [Azar et al. *17, Sidford et al. 18] for suggesting the
minimax PAC sample complexity

) <H3SA/82)

e (Often provide intuitions / directions for improvement
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Our result (current best) for learning m-step a-revealing POMDPs:

5 poly(H) - S?OA™
a2e?

Lower bounds quite scarce and preliminary...

1. Preliminary lower bound by [Liu et al. '22]:
Q (min{1/(aH), A"~} + A1)

2. By embedding {MDPs, contextual bandits}:
o <Hmin{S, O}A + OA >

e2
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Hard instance construction (2-step case, simplified)

O Observations and rewards

__________ O Invisible states

— Actions and transitions

Building blocks

2K 2K - 2K 2K Uniformity |
) | 1 1 testing |

— — — — m— m— — m— m— o e e e e e e e e e e m— m—

e Tree-MDP to obtain HSA factor [Domingues et al. '21]

o 2-step revealing combination lock to force exploration with revealing mechanism

e Uniformity testing for constructing hard-to-distinguish distributions over [O], and
obtain \/5/(05282) factor in lower bound [Paninski ‘08, Diakonikolas et al. *14, ...]
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Thank you!

Partially Observable RL with B-Stability: Unified Structural Condition and Sharp Sample-Efficient Algorithms.
Fan Chen, Yu Bai, Song Mei. ICLR 2023 (spotlight). https://arxiv.org/abs/2209.14990

Lower Bounds for Learning in Revealing POMDRPs.
Fan Chen, Huan Wang, Caiming Xiong, Song Mei, Yu Bai, 2023. https://arxiv.org/abs/2302.01333
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B-Stability

For any PSR with an associated B-representation, we define its B-operators {B.p} he[H] 88

BH:h . RUh — R(OXA)H_h+17 q— [BH:h(Th:H) ) q]Th:HE(OXA)H_h+1'

Operator By., maps any predictive state q = q(7,—1) at step h to the vector By.rq = (P(7h.5|Th-1))r,.5
which governs the probability of transitioning to all possible futures, by properties of the B-representation
(cf. (18) & Corollary B.2). For each h € [H], we equip the image space of Bg.n, with the II-norm: For a
vector b indexed by 7.z € (O X .A)H —h+1 we define

[bllg :=maxz >  coxaya—n+1 T(Th:m)b(Th:m), (3)

where the maximization is over all policies 7 starting from step h (ignoring the history 7,—1) and 7 (7h.z) =
I In<n <m Tw(an|on, Th.n—1). We further equip the domain RY» with a fused-norm | - |4, which is defined
as the maximum of (1,2)-norm and IT"-norm®

lall, := max{flall; 5, llalm} (4)
. 2\1/2 _ _
1,2 ° 7 (ZaGUA,h (Zo:(o,a)euh |Q(0>a)|) ) J ”q”H/ += mMaXgz Zteah ﬂ-(t) |q(t)| ’ (5)

where Uy, := {te U}, : #t’ € U, such that t is a prefix of t'}.

lql

We now define the B-stability condition, which simply requires the B-operators {Bg.1}ne[r] to have bounded
operator norms from the fused-norm to the II-norm.

Definition 4 (B-stability). A PSR is B-stable with parameter Ag > 1 (henceforth also Ag-stable) if it
admits a B-representation with associated B-operators {Bg.p} he[H] Such that

sup max |Bg.rq|m < As. (6)
he[H] lalx=1



B-representation for Decodable POMDPs

B.3.5 Decodable POMDPs
To construct a B-representation for the decodable POMDP, we introduce the following notation. For h <

. / / /
H —m, we consider t;, = (0n,ah," * ,0h+m—1) € Un, the1 = (0,141,441, " »Oh+m) € Un+1, and define

IP)(Oh+m = O;H_mlsh—f—m—l = ¢h+m—1(th), ah—}-m—l), if op41:h4m—1 = 0;z+1:h+m—1
Ph(th+1|th) = and Qh+1:h+m—2 = a;l+1;h+m_2a (27)
0, otherwise,

where ¢ 1.1 is the decoder function that maps t; to a latent state spi,,—1. Similarly, for h > H — m,
th € Up, the1 € Upy1, we let Pp(tp11|trn) be 1 if ¢, ends with ¢541, and 0 otherwise.

Under such definition, for all h € [H], t;, € Up, th+1 € Up+1, it is clear that

Pr(th+1ltn) = P(th+1ltn, Th-1) (28)

for any reachable (7,_1,ts), because of decodability. Hence, we can interpret Py (t511|tn) as the probability
of observing t,1 conditional on observing t; on step h. ¥ Then, for h € [H], we can take

B (0,a) = [1((0,a) — th)]Ph(th+1|th)](th+1,th)euh+1 XUp,? (29)

where 1((0,a) — t3) is 1 if ¢ starts with (0,a) and 0 otherwise!®.

We verify that (29) indeed gives a B-representation for decodable POMDPs:



B-representation for Revealing POMDPs

Proof of Proposition C.2. Chen et al. (2022a, Appendix B.3.3) showed that any m-step a-revealing POMDP
M is a o~ !-stable PSR with core test set Uj, = (O x A)mir{m—LH=h} » O and explicitly constructed the
following B-representation for it: when h < H — m, set

Bh(oa CL) = 1MIh+1’]rh,a dlag (®h(0|))M;7 he [H - m]7 (12)
and when h > H — m, take
Bh(oh,ah) = [ﬂ(th = (0h7a’h’th+1))](th+1,th)61/lh+1xuh I= Ruh+1 ><1/lh7 (13)

where 1(tp = (op,an,thy1)) is 1 if ¢t equals to (op,an,ths1), and 0 otherwise.



