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Partially Observable Markov Decision Processes (POMDPs)

POMDPs =  MDPs + Observations = HMMs (Hidden Markov Models) + Actions

Figure credit: Song Mei



Challenge for Learning in POMDPs



                        (S states, A actions, H steps): 
-optimal policy can be found in


[Bellman ’57, Howard ’60, Bertsekas ’87, Kearns & Singh ’02, Azar et al. ’17, Sidford et al. 
’18, Jin et al. ’18…]
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ε
Tabular MDPs 

 time and samplespoly(H, S, A,1/ε)

Challenge for Learning in POMDPs

                             (S latent states, O observations, A actions, H steps):Tabular POMDPs 
• Reason about 

• Policies are                                              , requires  memory to store

• All while                the environment

2Ω(H)
belief over states

history-dependent in general
exploring



Computational and Statistical Hardness

Planning is already hard:Computational hardness



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]
• Learning optimal memoryless policy is NP-hard [Vlassis et al. ’12]



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]
• Learning optimal memoryless policy is NP-hard [Vlassis et al. ’12]

(with  compute):∞Statistical hardness



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]
• Learning optimal memoryless policy is NP-hard [Vlassis et al. ’12]

(with  compute):∞Statistical hardness

• Learning optimal policy requires  samples in the worst-case 
[Krishnamurthy et al. ’16]

exp(Ω(H))



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]
• Learning optimal memoryless policy is NP-hard [Vlassis et al. ’12]

(with  compute):∞Statistical hardness

• Learning optimal policy requires  samples in the worst-case 
[Krishnamurthy et al. ’16]

exp(Ω(H))

• Hard instance:                                                     with “dummy observations”“non-revealing combination lock”



Computational and Statistical Hardness

Planning is already hard:Computational hardness
• Computing optimal policy is PSPACE-complete [Papadimitrou & Tsitsiklis ’87]
• Learning optimal memoryless policy is NP-hard [Vlassis et al. ’12]

Question: What are “tractable” subclasses of POMDPs that can be learned 
with poly samples, how sharply, and with what algorithms?

(with  compute):∞Statistical hardness

• Learning optimal policy requires  samples in the worst-case 
[Krishnamurthy et al. ’16]

exp(Ω(H))

• Hard instance:                                                     with “dummy observations”“non-revealing combination lock”
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Example 1: Revealing (Observable) POMDPs

                                                     [Jin et al. ’20]: The emission matrices at 
all step  satisfy

                                               ,  
(  is some operator norm, and  is any left inverse of matrix ) 

h ∈ [H]
∥𝕆+

h ∥ ≤ α−1

∥ ⋅ ∥ A+ A

Single-step -revealing POMDPs α

            Emission matrices have                           ==> different states are 
probabilistically distinguishable from their emitted observations
Desire: full column rank

Rules out “uninformative” observations.
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Multi-step Revealing POMDPs

                                               [Liu et al. ’22a]: The 

at all step  satisfy

                                               ,  

(  is some operator norm, and  is any left inverse of matrix ) 

h ∈ [H]
∥𝕄+

h,m∥ ≤ α−1

∥ ⋅ ∥ A+ A

-step -revealing POMDPs m α -step emission-action matricesm
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Example 2: Decodable POMDPs

            Latent state can be                                  from the observation.Desire: uniquely determined

                     [Du et al. ’19]: There exists an (unknown) decoder  at every 
step  such that

                                               .

ψ⋆
h

h ∈ [H]
sh = ψ⋆

h (oh)

Block MDPs
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Multi-Step Decodable POMDPs

                                         [Efroni et al. ’22]: There exists an (unknown) 
decoder  at every step  such that

                         .

ψ⋆
h h ∈ [H]

sh = ψ⋆
h (oh−m+1, ah−m+1, …, oh−1, ah−1, oh)

-step decodable MDPsm
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Existing Work

for each class of POMDPsDifferent Algorithms

and no unification of the proof techniquesCase-by-case analysis

Other tractable classes & tasks:

• Reactive POMDPs [Jiang et al. ’17]

• Latent MDPs [Kwon et al. ’21, Zhou et al. ’22]

• Future-sufficient low-rank POMDPs [Wang et al. ’22]

• Linear POMDPs [Cai et al. ’22]

• Learning short-memory policies [Uehara et al. ’22]

• …

A partial unification: Regular PSRs [Zhan et al. ’22]

Learning with                                 has been shown to be possible within 
revealing POMDPs, decodable POMDPs, etc.

polynomial samples

However:
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To verify, for any fixed ,                             



indeed yields emission probabilities

h
Bh:1(τh) = 𝕆h+1𝕋h,ah

diag(𝕆h(oh | ⋅ ))𝕋h−1,ah−1
diag(𝕆h(oh−1 | ⋅ ))…𝕋1,a1

diag(𝕆h(o1 | ⋅ ))μ1
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More Generally,

                                                   <==>                                   
B-representation full dynamics of the observables

                                                                    [Littman & Sutton ’01]

• Any Sequential Decision Process (SDP) that admits a 

• Any Sequential Decision Process (SDP) that admits                       

(two equivalent definitions)


A

Predictive State Representations (PSRs)

core test sets

generalization of POMDPs.

B-representation
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 where operator

                  


ΛB > 0 h ∈ [H]
∥ℬH:h∥*→Π ≤ ΛB

ℬH:h : q → [BH:h(τH:h)q]τh:H
= [BH(oH, aH)…Bh(oh, ah)q](oa)h:H

B-Stable 

B-Stability Condition
[Chen, Bai, Mei ’22]

Intuition: 

∥ℬθ⋆

H:h(B
θ
h−1:1μ1 − Bθ⋆

h−1:1μ1)∥Π ≤ ΛB∥(Bθ
h−1:1 − Bθ⋆

h−1:1)μ1∥*

Error from performance difference 

(for bounding Regret/PAC)

Estimation error of B matrices 
(Algorithm can bound)

A certain operator norm



Landscape of POMDP/PSRs

All PSRs

B-Stable PSRs

Revealing POMDPs

Decodable POMDPs

Low-rank Future-sufficient POMDPs

Linear POMDPs

Test-sufficient Latent MDPs

Regular PSRs
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Algorithms for B-Stable POMDP/PSRs

1. Use policy derived from belief (optimism / posterior sampling) to collect data
2. Update belief about true model, such as confidence set or posterior

Three                       algorithms with                           :model-based similar principles

Note the principle is general, not limited to POMDP/PSRs. 


* For details on the connections/differences between the 3 algorithms, see our 
related paper [Chen, Mei, Bai ’22b]
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Algorithm 1: OMLE

In each iteration k,
1. Set  to be                                       wrt πk = arg max

π
max
θ∈ℬk

Vπ
θ ℬk

2. Play corresponding “exploration policies”   πk
h,exp = Πh,exp(πk)

3. Update confidence set  given dataℬk+1

OMLE (Optimistic Maximum Likelihood Estimation) [Liu et al. ’22a]

optimistic greedy policy

ℬk+1 = {θ : ∑(π,τ)∈𝒟k+1 log ℙπ
θ(τ) ≥ maxθ′￼∑(π,τ)∈𝒟k+1 log ℙπ

θ′￼(τ) − β}
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Algorithm 2: E2D, Based on Decision-Estimation Coefficients (DECs)

In each iteration k,
1. Set policy distributions  to minimize risk                                       (pk

exp, pk
out) Vμk( ⋅ , ⋅ )

2. Sample and play exploration policy  , obtain trajectory πk ∼ pk
exp τk

3. Update “tempered posterior’’ of model: 
                       μk+1(θ) ∝θ μk(θ) ⋅ exp (η ⋅ log ℙπk

θ (τk))
Output policy pout = 1

K ∑K
k=1 pk

out

E2D (Estimation-To-Decisions) [Chen et al. ’22b, Foster et al. ’21]

Risk functional determined by the                          : 
                Vμk(pexp, pout) = 𝔼π∼pout

[Vπθ
θ − Vπ

θ ] − γ𝔼π∼pexp
𝔼θk∼μk[D2

H(ℙπ
θ, ℙπ

θk)]
Explorative DEC



Algorithm 3: MOPS
MOPS (Model-based Optimistic Posterior Sampling) [Agarwal & Zhang ’22]

Similar as E2D, except for using                 posterior.optimistic
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Main Result for Learning B-Stable POMDP/PSRs

Thm [Chen, Bai, Mei ’22a]: Algorithms {OMLE, E2D, MOPS} can all learn a 

 -stable POMDP/PSR within 
                                             
 episodes of play.


ΛB

K = Õ (dAUAΛ2
B/ε2)

Above, 
• : PSR rank (  for POMDPs)d d ≤ S
• : number of actionsA
• : number of core actions (equals  for m-step revealing/decodable)UA Am−1

First       rate (previous works at least       on their stability/regularity parameters)Λ2
B Λ4

B



Instantiations to Concrete Subclasses

                                          on revealing POMDPs, decodable POMDPs, …

 = log-covering number of model classlog 𝒩Θ

Significantly sharper rates
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1.                                              into B-errors 
Relate regret/PAC learning objective to estimation error in “B operators” 
 

2. Bounding squared B-errors by                                        , using B-stability. 
All 3 algorithms control this squared Hellinger distance by algorithm design. 
 

3. A sharp                                                to bridge step 1 & 2

squared Hellinger distance

generalized -Eluder argumentℓ2

Performance decomposition

* Concurrent work [Liu et al. ’22b] shows B-errors <= TV distance in their step 2, and 
performs -Eluder argument in their step 3, which gives similar result but worse rate.ℓ1
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Towards Fine-Grained Studies
Understanding fundamental limits <== studying lower bounds

• In MDPs, lower bounds [Jaksch et al. ’10, Azar et al. ’13] predated the 
matching upper bounds [Azar et al. ’17, Sidford et al. ’18] for suggesting the 
minimax PAC sample complexity 
                                                   Θ̃ (H3SA /ε2)

• Often provide intuitions / directions for improvement
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Case Study: (Tabular) Revealing POMDPs

Lower bounds quite scarce and preliminary…

1. Preliminary lower bound by [Liu et al. ’22]: 
                                  Ω (min{1/(αH), AH−1} + Am−1)

2. By embedding {MDPs, contextual bandits}:  

                                  Ω ( H min{S, O}A + OA
ε2 )

                (current best) for learning -step -revealing POMDPs: 

                                               

m α

Õ ( poly(H) ⋅ S2OAm

α2ε2 )
Our result
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Lower Bounds for Revealing POMDPs
[Chen, Wang, Xiong, Mei, Bai ’23]

• First                      dependence on S, O, A,1/α,1/ε
• Suggests our  is sharp dependence on 1/α2 α
• First joint dependence on  and O 1/(αε)
• Regret is              for m-step revealing, whereas  for 1-stepÕ ( T )
• …
• Gap is only  in (S, O) for m-step revealingSO

multiplicative

Ω(T2/3)

Omitting H, assuming O >= SA in upper bounds
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Hard instance construction (2-step case, simplified)

Building blocks
•                 to obtain  factor [Domingues et al. ’21] HSA
•                                                      to force exploration with revealing mechanism
•                            for constructing hard-to-distinguish distributions over , and 

obtain  factor in lower bound [Paninski ’08, Diakonikolas et al. ’14, …] 
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Summary

We provide

• New unified condition (B-stability) for tractable learning in POMDP/PSRs 

• 3 algorithms (OMLE, E2D, posterior sampling)

• Sharp rates via unified analysis (B-stability + L2 Eluder argument)

• Lower bounds for revealing POMDPs

Thank you!
Partially Observable RL with B-Stability: Unified Structural Condition and Sharp Sample-Efficient Algorithms. 
Fan Chen, Yu Bai, Song Mei. ICLR 2023 (spotlight). https://arxiv.org/abs/2209.14990      

Lower Bounds for Learning in Revealing POMDPs.  
Fan Chen, Huan Wang, Caiming Xiong, Song Mei, Yu Bai, 2023. https://arxiv.org/abs/2302.01333       

Future directions

• Alternative algorithms (value-based?)
• Sharper rates for tabular revealing POMDPs
• Other tractable subclasses beyond revealing/decodable?

https://arxiv.org/abs/2209.14990
https://arxiv.org/abs/2302.01333
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