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Uncertainty quantification for prediction problems

Enhance point prediction with a quantification of the associated uncertainty.

time series forecasting image classification

Image source:
Left: Merlion library, Salesforce.
Right: Uncertainty Sets for Image Classification using 
Conformal Prediction, Angelopoulos et al. 2021.



Many existing notions of uncertainty quantification:

- Regression: variance estimation, quantiles / prediction intervals
- Classification: calibration, label prediction sets
- Others: OOD detection, ...

Notions of uncertainty quantification



Quantiles / prediction intervals
High-probability upper / lower bounds of y|x with good (marginal) coverage

e.g. 0.9, 0.95



Quantiles / prediction intervals
High-probability upper / lower bounds of y|x with good (marginal) coverage

One-sided: quantiles
Two-sided: prediction intervals

Image source: Conformalized Quantile 
Regression, Romano et al. 2019.

e.g. 0.9, 0.95



Classical methods for learning quantiles

● Parametric estimation (Cox 1975, Lawless & Fredette 2005, …)

Assume parametric family                        , get estimate     from observed data
Then take
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Classical methods for learning quantiles

● Quantile regression (Koenker & Bassett 1978, …)

Directly learn a quantile function       by minimizing the pinball loss on the data:

Approximate coverage if family         contains true    -quantile of          + large enough sample size



Sign of the coverage bias                         matters.    

Over-coverage:                                😃 (just over-conservative, but achieves desired coverage)

Under-coverage:                                😟 (does not achieve desired coverage)

Over-coverage vs. under-coverage



Quantile regression exhibits under-cover bias

Empirically, quantile regression is often found to under-cover (esp. with neural nets).

Image source: Conformalized Quantile 
Regression, Romano et al. 2019.
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Empirically, quantile regression is often found to under-cover (esp. with neural nets).

Image source: Conformalized Quantile 
Regression, Romano et al. 2019.

😃 Recent approaches such as conformal prediction can fix this (Vovk et al. 2005, Lei et al. 2018, …).

🤔 Existing “approximate coverage” theories do not explain this under-coverage bias.



● Asymptotic guarantees (Koencker & Bassett, 1978):

Existing theories cannot tell under- or over-coverage



● Asymptotic guarantees (Koencker & Bassett, 1978):

Existing theories cannot tell under- or over-coverage

Fix num parameters    , sample size               : 

Coverage bias has equal chance to be >0 or <0 in asymptotic regime.



● Finite-sample bounds via self-calibration inequalities (Steinwart & Christmann, 2011):

Existing theories cannot tell under- or over-coverage



● Finite-sample bounds via self-calibration inequalities (Steinwart & Christmann, 2011):

Existing theories cannot tell under- or over-coverage

Any fixed         : 

Cannot tell the sign of the coverage bias.

Population (expected) 
pinball loss

Capacity of function class
(e.g. Rademacher complexity)



Linear Quantile Regression Exhibits Under-Coverage
Data follows linear model:

Use quantile regression to learn a linear quantile function (with bias) at target level                    : 



Main Theorem: In the above setup, suppose                                                       , then we have

that is, well-specified linear quantile regression has an under-coverage bias.

Further, for small      we have the local expansion

i.e. under-coverage bias has order                          . 
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i.e. under-coverage bias has order                          . 

Linear Quantile Regression Exhibits Under-Coverage



Simulations

On Gaussian linear model (d=100), under-coverage bias matches our theoretical prediction.



Real data experiments
Quantile regression with {linear model, NNs} on real data



Overview of techniques

Step 1: Express coverage as function of parameter estimation errors
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Step 1: Express coverage as function of parameter estimation errors

Step 2: High-dimensional proportional limit analysis of estimation error 
(Donoho & Montanari 2013, Thrampoulidis et al. 2016, Sur & Candes 2019, ...):
As                                               ,  

Above, quantities                                      are the solution to a 3x3 system of nonlinear equations.

😐 solutions no closed-form.
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Step 1: Express coverage as function of parameter estimation errors

Step 2: High-dimensional proportional limit analysis of estimation error 
(Donoho & Montanari 2013, Thrampoulidis et al. 2016, Sur & Candes 2019, ...):
As                                               ,  

Above, quantities                                      are the solution to a 3x3 system of nonlinear equations.

😐 solutions no closed-form.

Step 3: Local linear analysis of solutions at small    : 

3x3 nonlinear system ≈ (Linearized) 3x3 linear system with closed-form solutions



Classification calibration

Image source: Practical Uncertainty Estimation & Out-of-Distribution 
Robustness in Deep Learning, NeurIPS 2020 tutorial

Calibration: A commonly used notion of uncertainty in classification.



Over- and under-confidence

For any binary classifier, its calibration error at level                  is defined as

Over-confident:                   (when model predicts 80% raining, actually 70% chance of raining)

⇒ under-estimates uncertainty in the data.



Well-specified logistic regression is over-confident

Solve binary linear logistic regression on realizable data:



Well-specified logistic regression is over-confident

Solve binary linear logistic regression on realizable data:

Theorem: In the above setting, suppose

For any                    , its calibration error at p converges to the following limit

That is, logistic regression is over-confident by an amount of                         . 

Similar techniques (proportional limit theory + local linear analysis of non-linear system).



Over-confidence in classification

Large neural nets are over-confident (Guo et al. 2017);

Realizable logistic regression (n=2000, d=100) also exhibits over-confidence, agreeing with our theory.

x-axis: confidence (predicted top probability) of the learned classifier



Conclusion & future directions

● First precise theoretical characterization of under-coverage bias in uncertainty quantification
○ Coverage in linear quantile regression
○ Calibration in binary classification w/ linear logistic regression

● Take-away: Under-estimation of data uncertainty is quite prevalent
○ Further theories? (e.g. non-linear models)

● How can we inspire new correction methods for practitioners

  Thank you!
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Nonlinear system for the coverage result


