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Uncertainty quantification for prediction problems

Enhance point prediction with a quantification of the associated uncertainty.
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Image source:

Left: Merlion library, Salesforce.

Right: Uncertainty Sets for Image Classification using
Conformal Prediction, Angelopoulos et al. 2021.



Notions of uncertainty quantification

Many existing notions of uncertainty quantification:

- Regression: variance estimation, quantiles / prediction intervals
- Classification: calibration, label prediction sets
- Others: OOD detection, ...



Quantiles / prediction intervals

High-probability upper / lower bounds of y|x with good (marginal) coverage

~

Coverage(f) =Px,y)(Y < f(X)) >a—" 809,095
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Image source: Conformalized Quantile
Regression, Romano et al. 2019.



Classical methods for learning quantiles

e Parametric estimation (Cox 1975, Lawless & Fredette 2005, ...)

Assume parametric family {ps(y|z)}sco, get estimate A from observed data
Then take

~

f(x) := a upper quantile of p(-|)



Classical methods for learning quantiles

e Parametric estimation (Cox 1975, Lawless & Fredette 2005, ...)

Assume parametric family {ps(y|z)}sco, get estimate A from observed data
Then take

~

f(x) := a upper quantile of p(-|)

Approximate coverage when family is correct + sample size large enough so that g~ 4,



Classical methods for learning quantiles

e Quantile regression (Koenker & Bassett 1978, ...)

Directly learn a quantile function f; by minimizing the pinball loss on the data:

n

0 = ar min R, (0) := — £%(y; — fo(x;)).
guin R (0) = 7 3060 = foo)
Pa(2)
1—a

Figure 1: Visualization of the pinball loss function in (6), where z = y — 9.



Classical methods for learning quantiles

e Quantile regression (Koenker & Bassett 1978, ...)
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Figure 1: Visualization of the pinball loss function in (6), where z = y — 9.

Approximate coverage if family {fs} contains true a-quantile of Y|X + large enough sample size



Over-coverage vs. under-coverage

~

Sign of the coverage bias Coverage(f) — a matters.
Over-coverage: Coverage(f) > a @ (just over-conservative, but achieves desired coverage)

Under-coverage: Coverage(f) < a @ (does not achieve desired coverage)



Quantile regression exhibits under-cover bias

Empirically, quantile regression is often found to under-cover (esp. with neural nets).

Initial intervals (neural net)

Test examples

Target coverage level: 90%
Actual coverage: 66.77%

Image source: Conformalized Quantile
Regression, Romano et al. 2019.



Quantile regression exhibits under-cover bias

Empirically, quantile regression is often found to under-cover (esp. with neural nets).

Initial intervals (neural net)

6 Test examples

Image source: Conformalized Quantile
Regression, Romano et al. 2019.

Target coverage level: 90%
Actual coverage: 66.77%

¥ Recent approaches such as conformal prediction can fix this (Vovk et al. 2005, Lei et al. 2018, ...).

=) Existing “approximate coverage” theories do not explain this under-coverage bias.



Existing theories cannot tell under- or over-coverage

e Asymptotic guarantees (Koencker & Bassett, 1978):



Existing theories cannot tell under- or over-coverage

e Asymptotic guarantees (Koencker & Bassett, 1978):

Fix num parameters d, sample size n — 00:

AN

V(@ —06,) 3NO,V) = /n(Coverage(f;) — a) > N(0,72)

Coverage bias has equal chance to be >0 or <0 in asymptotic regime.



Existing theories cannot tell under- or over-coverage

e Finite-sample bounds via self-calibration inequalities (Steinwart & Christmann, 2011):



Existing theories cannot tell under- or over-coverage

e Finite-sample bounds via self-calibration inequalities (Steinwart & Christmann, 2011):

Any fixed n, d:

Population (expected)

10— 6xll2 < C\/R(f3) = R(fs,) — pindailioss

Comp({ fo}) Capaci :
) — pacity of function class
= ’COVGrage(fe) a| < C\/ n B (e.g. Rademacher complexity)

Cannot tell the sign of the coverage bias.



Linear Quantile Regression Exhibits Under-Coverage

Data follows linear model:
y=w,x+2z where x~ N(0,1;), z~ P,.

Use quantile regression to learn a linear quantile function (with bias) at target level « € (0.5, 1):

~

Fx) =wx+b



Linear Quantile Regression Exhibits Under-Coverage

Data follows linear model:
y=w,x+2z where x~ N(0,1;), z~ P,.

Use quantile regression to learn a linear quantile function (with bias) at target level « € (0.5, 1):

Fx) =wx+b

Main Theorem: In the above setup, suppose n,d — co,d/n — k € (0, ko], then we have

Covera,ge(A) N Co,x<
that is, well-specified linear quantile regression has an under-coverage bias.
Further, for small k we have the local expansion
Corx =0—(a—1/2)k+ o(k).

i.e. under-coverage bias has order ©(x) = ©(d/n).




Linear Quantile Regression Exhibits Under-Coverage

Main Theorem: In the above setup, suppose n,d — co,d/n — k € (0, ko], then we have

AN

Coverage( f) N Co,x<

that is, well-specified linear quantile regression has an under-coverage bias.

Further, for small K we have the local expansion a=0.9, n=10d (k=d/n=0.1
Cy.r = 0.86
Corx =0—(a—1/2)k+ o(k). /:> :

i.e. under-coverage bias has order ©(k) = ©(d/n).




Simulations

On Gaussian linear model (d=100), under-coverage bias matches our theoretical prediction.
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Real data experiments

Quantile regression with {linear model, NNs} on real data

Table 1: Coverage (%) of quantile regression on real data at nominal level « = 0.9. Each entry reports the
test-set coverage with mean and std over 8 random seeds. (d, n) denotes the {feature dim, # training examples}.

Dataset | Linear MLP-3-64 MLP-3-512 MLP-freeze-3-512 | d n
Community 88.63+1.53 76.46+1.41 63.09+291 &7.85+1.30 100 1599
Bike 89.644+0.44 88.75+091 87.67+0.49 89.2740.57 18 8708
Star 89.48+2.56 83.14+1.76 69.71+1.82 88.05+2.42 39 1728
MEPS_19 90.09+0.72 85.46+0.96 78.554+0.93 89.03+0.51 139 12628
MEPS_20 90.061+0.57 86.52+0.65 80.774+0.72 89.604+0.28 139 14032
MEPS_21 89.994+0.39 83.79+0.52 73.09+0.82 89.15+0.36 139 12524
Nominal () |[90.00 90.00 90.00 90.00 | . -




Overview of techniques

Step 1: Express coverage as function of parameter estimation errors

~ -~

Coverage(F) = Egnn(o,) [ (IW — w. [2G + D).



Overview of techniques

Step 1: Express coverage as function of parameter estimation errors

~ -~

Coverage(f) = Egruno,n)[@ (% — w,||>G + D).

Step 2: High-dimensional proportional limit analysis of estimation error
(Donoho & Montanari 2013, Thrampoulidis et al. 2016, Sur & Candes 2019, ...):
As n,d — co,d/n — k € (0,00),

W — w2 B 7(k), and b5 b, (k).

Above, quantities (7, (k), bx(k), A«(k)) are the solution to a 3x3 system of nonlinear equations.

=) solutions no closed-form.
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~ -~

Coverage(f) = Egruno,n)[@ (% — w,||>G + D).

Step 2: High-dimensional proportional limit analysis of estimation error
(Donoho & Montanari 2013, Thrampoulidis et al. 2016, Sur & Candes 2019, ...):
As n,d — co,d/n — k € (0,00),

W — w2 B 7(k), and b5 b, (k).

Above, quantities (7, (k), bx(k), A«(k)) are the solution to a 3x3 system of nonlinear equations.

=) solutions no closed-form.

Step 3: Local linear analysis of solutions at small K:

3x3 nonlinear system = (Linearized) 3x3 linear system with closed-form solutions



Classification calibration

Calibration: A commonly used notion of uncertainty in classification.

Calibration Error = |Confidence - Accuracy|

Of all the days where the model predicted rain with 80%

probability, what fraction did we observe rain? 1 6°F| °c ek
e 80% implies perfect calibration e R
e Lessthan 80% implies model is overconfident e
e Greater than 80% implies model is under-confident & ﬁ&—_ D s

Image source: Practical Uncertainty Estimation & Out-of-Distribution
Robustness in Deep Learning, NeurlPS 2020 tutorial



Over- and under-confidence

For any binary classifier, its calibration error at level p € (0.5,1) is defined as

AZ(F) =~ Pogyyer (Y =11 fX) = p)

Over-confident: A%!(f) > 0 (when model predicts 80% raining, actually 70% chance of raining)

= under-estimates uncertainty in the data.



Well-specified logistic regression is over-confident

Solve binary linear logistic regression on realizable data:
P: X~N(0,I), PY =1|X=x)=o0(w/x),

n

Z [log(l +exp(w'x;)) — yinxi].
1=1

Sli—‘

W = argmin Ry (w) :=
W



Well-specified logistic regression is over-confident

Solve binary linear logistic regression on realizable data:

P: X~N(0,I), PY =1|X=x)=o0(w/x),

*

. 5 1 ¢
w = argmin R, (w) := - Z [log(l +exp(w'x;)) — yinxi].
W

1=1

salesforce

Theorem: In the above setting, suppose n,d — co,d/n — k < Ko
Forany p € (0.5,1), its calibration error at p converges to the following limit
APN(f) =p—P(Y =1|f(X) =p)
2% Cpr = Cpr+o(k), Cp>0

That is, logistic regression is over-confident by an amount of ©(x) = ©(d/n).

Similar techniques (proportional limit theory + local linear analysis of non-linear system).



Over-confidence in classification

Large neural nets are over-confident (Guo et al. 2017);

Realizable logistic regression (n=2000, d=100) also exhibits over-confidence, agreeing with our theory.
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x-axis: confidence (predicted top probability) of the learned classifier



Conclusion & future directions

e First precise theoretical characterization of under-coverage bias in uncertainty quantification
o Coverage in linear quantile regression
o Calibration in binary classification w/ linear logistic regression

e Take-away: Under-estimation of data uncertainty is quite prevalent
o  Further theories? (e.g. non-linear models)

e How can we inspire new correction methods for practitioners

Thank you!

[References]
e Understanding the Under-Coverage Bias in Uncertainty Estimation. Yu Bai, Song Mei, Huan Wang, Caiming
Xiong. NeurIPS 2021.
e Don’t Just Blame Over-Parametrization for Over-Confidence: Theoretical Analysis of Calibration in Binary
Classification. Yu Bai, Song Mei, Huan Wang, Caiming Xiong. ICML 2021.



Backup Slides



Nonlinear system for the coverage result

W — wyla D m(k), and b-D b(k).

(7K = X* - E(G,z2)mN(0,1)xP, [€le (TG + Z3 0)7),
7k = A E(g,z)on0,1)xP. [egp (TG + Z; MG,
|0 =E(G,2)~N(0,1)xP. s (TG + Z; A)),

N\

es(z;7) = min, 5-(z — v)2 + £(v) = (*(t—0D)



