Motivation: RL with limited adaptivity?
- In many domains (recommendation, medical, ...), deploying a new policy is more prohibitive than gathering data with the existing policy.

Online RL is fully adaptive. Any middleground?

Offline (batch) RL is non-adaptive, but much more challenging.

Proposed framework: **low switching cost RL**

Setup: Episodic MDP with horizon H. RL algorithm plays K episodes (T = K*H steps.) Measure PAC/Regret.

Definition: the switching cost between two (deterministic) policies is number of different actions they would take, (summed) for all (h, s):

\[n_{\text{switch}}(\pi, \pi') := \sum_{h \in \{1, \ldots, H\}} n_h \neq n_h' \]

Definition: the switching cost of an RL algorithm that plays with policies is

\[N_{\text{switch}} := \sum_{k=1}^{K} n_{\text{switch}}(\pi^k, \pi^{k+1}) \]

Goal: fast exploration with low switching cost

Prior work: Q-Learning with UCB exploration:

\[\hat{Q} \left(\sqrt{\frac{3SA}{K}} \right) \text{regret, but } N_{\text{switch}} = \Theta(HSK) \text{ linear in } K \]

[1] Jin et al. 2018

Any low regret algorithm such that \(N_{\text{switch}} \) sublinear in K?

Recap: UCB2 scheduling for bandits

Algorithm (UCB2): Repeat until played K times:
- Select the arm that maximizes the UCB
- If this is the r-th time it’s selected, play the arm exactly \(\tau(r) = (1 + \alpha)' \) times, where \(\tau(r) = (1 + \alpha)' \)

Theorem [Auer et al. 2002]: UCB2 achieves same regret as UCB, and only \(\log(K) \) policy switches:

\[N_{\text{switch}} = O(A \log(K/A)) \]

Idea: Integrate UCB2 into Q-Learning!

Our Algorithm: **Q-Learning with UCB2 scheduling**

Key idea: update the policy only when Q has been updated \(\tau(r) = (1 + \alpha)' \) times.

Definition: The triggering sequence \(\{t_n\}_{n \geq 1} \) with parameter \((\alpha, r) \) is

\[\{t_n\}_{n \geq 1} = \{1, 2, \ldots, \tau(r)\} \cup \{\tau(r) + 1, \tau(r) + 2, \ldots\} \]

Algorithm 2 Q-Learning with UCB2-Hoeffding (UCB2H) Exploration.

Setup
- Parameter \(n \in \{0, 1\} \), \(r \in [2, \ldots, H] \).
- Initial: \(\hat{Q}_h(x, a) := H, \hat{Q}_h(x, a) \leftarrow 0 \) for all \(x, a, h \) in \(S \times \mathcal{A} \times [H] \).

For episode k = 1, 2, \ldots, K do

Receive \(x_h \) for step \(h = 1, \ldots, H \) do
- Take action \(a_h \leftarrow \arg\max_a \hat{Q}_h(x_h, a) \), and observe \(x_{h+1} \). // Take action according to Q
- \(t = \max_{t'=t} x_{h}(t+1) + 1 \). // Update Q via Q-Learning
- \(\hat{V}_h(x_h) \leftarrow \max_a \hat{Q}_h(x_h, a) + 1 + (1 - \alpha)Q_h(x_h, a) + \alpha x_{h+1}(t+1) + 1 \). // Update Q via Q-Learning
- \(\hat{V}_h(x_h) \leftarrow \max_a \hat{Q}_h(x_h, a) \). // Update policy \(Q_{h}(x_h) \leftarrow \hat{V}_h(x_h) \). // Set Q to be Q occasionally according to UCB2 scheduling

Theoretical Result

Theorem 1: Our Q-Learning with UCB2-[Hoeffding, Bernstein] exploration achieves \(\hat{O} \left(\sqrt{\frac{HS^2A}{K}} \right) \) and logarithmic switching cost:

\[N_{\text{switch}} \leq O(H^2SA \log(K/A)) \]

Proof highlight: analysis of error propagation under delayed Q updates.

Application: concurrent /parallel RL

Setup: M agents play an episode in parallel, and can only communicate after each episode.

Theorem 2 (Nearly linear speedup in PAC concurrent RL): There exists concurrent versions of our algorithm, s.t. given M agents, it can find \(\varepsilon \) optimal policy in \(\hat{O} \left(\frac{H^2SA}{\varepsilon^2M} \right) \) rounds.

→ Also improves upon prior work [Guo et al. 2015] in (H, \(S, \varepsilon \)) dependence.

Lower bound on low-switching algs

Simple Observation: you “need” to switch \(HS(A-1) \) times to at least try out all the possible actions.

Theorem 3 (Lower bound): Any algorithm that has switching cost \(N_{\text{switch}} \leq HSA/2 \) has to suffer from linear (trivial) worst-case regret:

\[\sup_{M \in M} \mathbb{E}[\text{Regret}(K)] \geq KH/4 \]

Remark: Our algorithm achieves \(N_{\text{switch}} = \hat{O}(H^2SA) \), so still an \(H^2 \) gap between the lower and upper bounds.

Discussion & future work
- Close the gap on the switching cost.
- Alternative notions of limited adaptivity:
 - Hard constraint on switching cost.
 - RL with only O(1) rounds of adaptivity.
- Connections to fully offline/batch RL.