Motivation

In many RL domains, executing a new policy is expensive. **Off-policy RL**: Find π_* given only off-line data from μ.

Challenging... Relax

Limited Adaptivity RL: Find π_* with online data from $\{\mu_1, \ldots, \mu_n\}$ for some small n.

Local Policy Switch

Setup: episodic MDP with horizon H, play K episodes

Def: The number of local policy switches for an RL algorithm is

$$N_{\text{switch}} = \sum_{k=1}^{K} \left| \{ (h, s) : \pi^k_h(s) \neq \pi^{k+1}_h(s) \} \right|$$

where π^k_h is the (deterministic) policy it plays at episode K.

Smaller $N_{\text{switch}} \Rightarrow$ closer to off-policy

Prior work: Q-Learning with UCB-Hoeffding exploration(1):

$$\tilde{O}(\sqrt{H^4SAT})$$ regret, but $N_{\text{switch}} = \Theta(HSK)$ linear in K 😞

Any sublinear regret algo such that N_{switch} sublinear in K?

Algorithm: Q-Learning with UCB2 Scheduling

Idea: update the policy according to Q only when Q has been updated $\tau(r) = (1 + \alpha)^r$ times.

Algorithm 2 Q-learning with UCB2 scheduling

input Parameter $\alpha \in (0, 1)$ and $c > 0$.

Initialize: $Q_h(x, a) \leftarrow H$, $Q_h \leftarrow Q_h^0$, $N_h(x, a) \leftarrow 0$ for all $(x, a, h) \in S \times A \times [H]$.

for episode $k = 1, \ldots, K$ do

Receive x_1.

for step $h = 1, \ldots, H$ do

Take action $a_h \leftarrow \arg \max_{a'} Q_h(x_h, a')$, and observe x_{h+1}.

$\tilde{Q}_h(x_h, a_h) \leftarrow (1 - \alpha_t)\tilde{Q}_h(x_h, a_h) + \alpha_t [r_h(x_h, a_h) + \tilde{V}_{h+1}(x_{h+1}) + b_t]$. // Update $Q \setminus Q_h$ via Q-Learning

$\tilde{V}_h(x_h) \leftarrow \min \{ H, \max_{a' \in A} Q_h(x_h, a') \}$

if $t = \tau(r)$ for some r then

(Update policy) $Q(x_h, \cdot) \leftarrow \tilde{Q}(x_h, \cdot)$. // Set Q to be \tilde{Q} occasionally according to UCB2 scheduling

end if

end for

end for

Theoretical Result

Theorem 1: Q-Learning with UCB2 scheduling achieves regret $\tilde{O}(\sqrt{H^4SAT})$ and policy switch bound

$$N_{\text{switch}} \leq O(H^3SA \log(K/A))$$

which is logarithmic in K. 😊

Proof highlight: improved propagation of error argument under delayed Q updates.

“**Theorem**” 2 (lower bound): Any sublinear regret or PAC algorithm must have

$$N_{\text{switch}} \geq \Omega(HSA)$$

Mild gap: $O(H^2 \log(K/A))$, conjecture that log is also necessary & gap is at most $O(H^2)$

Discussion & Future Work

- Algorithms with tighter regret bounds (e.g. tighten the H^4)?
- Close the gap between lower and upper bound.
- Model-based algorithms with limited adaptivity? Better bounds?

References